	[image: image24.png]MIVI
a musical instrument visual interface
Christopher Nash

Word Count: 34,844*
Supervisor: Dr S King

3rd year project submitted for the degree BSc Computer Science at the

Department of Computer Science, University of York

March 2002

	abstract

	
	MIVI is a software application that takes a MIDI input (either live or sequenced) and uses it to generate real-time visually accurate 3D simulations of real-world musical instruments in OpenGL. These models, based on the input, react as though a virtual performer (not rendered) were playing the instrument and aim to be as flexible, or inflexible, as the instruments themselves, given the MIDI framework.

 Throughout this report, we shall principally focus on MIVI’s possible applications to the field of music education, including instrument tuition and the teaching of music literacy. However, the implementation process will also bring us close to many of the core components of the MIDI protocol itself, enabling us to implicitly identify the virtues, as well as explicitly isolate the shortcomings, of this industry-standard specification.

	abstract

	2

	chapter 1 introduction
	4

	1.1 concept

1.2 application

1.3 about the report

	4

5
6

	chapter 2 review
	7

	2.1 MIDI

2.1.1 introducing MIDI

2.1.2 MIDI and GM extensions

2.2 synthesis

2.2.1 instruments in the real world

2.2.2 sample-based synthesis

2.2.3 physical-modelling synthesis

2.3 performance

2.3.1 expression

2.3.2 technique

2.4 education

2.4.1 music education

2.4.2 computers in education

2.5 the DIVA project

2.5.1 DIVA history

2.5.2 the DIVA system

	7
7
9
11
11
13
14
15
15
15
18
19
22
23
23
23

	chapter 3 system architecture
	26

	3.1 the VST host system

3.1.1 alternative platforms

3.1.2 programming language

3.1.3 initialising the VST architecture

3.2 the graphics environment

3.2.1 integrating VST and OpenGL

3.2.2 initialising OpenGL

	26
28
29
29
30
30
34

	chapter 4 instrument models
	36

	4.1 hierarchical instrument definitions

4.1.1 graphics hierarchies

4.2 the ‘MIVIInstrument’ class

4.2.1 integrating instruments into VST

4.3 a ‘miviPIANO’ subclass

4.3.1 the piano body

4.3.2 the keyboard

4.4 a ‘miviFLUTE’ subclass

4.4.1 the flute body

4.4.2 the key mechanism

	36
37
37
39
39
40
41
42
43
43

	chapter 5 interactive subsystem
	
48

	5.1 receiving MIDI

5.2 the tutor system

5.2.1 designing the tutor system

5.2.2 modelling interaction

5.2.3 instructing the user

5.2.4 implementing the tutor system

5.2.5 eliciting feedback

5.3 the interface

5.3.1 the MIVI learning environment

5.3.2 implementing the interface

5.3.3 default plugin controls

5.4 preserving the environment

	48
49
49
50
51
52
53
54
54
55
56
56

	chapter 6 evaluation
	
57

	6.1 feedback

6.1.1 technical feedback

6.1.2 educational feedback

	57
57
58

	chapter 7 conclusion
	
60

	7.1 future work

7.2 acknowledgements

	60
62

	appendix A General MIDI voice list
	 REF apA \h
63

	appendix B introduction to OpenGL
	65

	appendix C implementation source code

	68

	bibliography
	79

	
	chapter 1 introduction

	
	In recent years, we have seen the audio-visual field of computer science mushroom. Sensory I/O hardware has advanced exponentially, to the point where aspects of audio and video quality have surpassed the capabilities of the human eye and ear, with sound-cards capable of outputting frequencies higher than the Nyquist limit and graphics-cards, frame rates higher than the 72 Hz (the limit of the human eye).

 As processor manufacturers try to cram more functionality on a single chip, questions of audio-video integration and interaction are being raised. Visual sub-systems, like OpenGL [42], are being complemented with audio counterparts, such as OpenAL [25]. MIVI, which stands for Musical Instrument Visual Interface, represents a similar complement, this time from audio to visual – MIDI to OpenGL.

 This section will introduce the concept of MIVI, its intended uses and familiarise the reader with the structure of this report.

	1.1 concept

	
	For two decades, the MIDI (Musical Instrument Digital Interface) specification has set the industry standard for the electronic encapsulation of music. Instead of being a standard for audio waveforms or data streams, like MPEG, MIDI encodes music on a semantic level – essentially an electronic score format – and is used to send musical notes and performance instructions to devices such as synthesizers, sequencers, mixers, etc., for their storage, processing or auralisation, etc. In many senses, it forms a communication protocol, for musical devices.

	fig.1.1 - typical
dataflow of MIDI in a
musical environment
	[image: image1.png]

	
	 In this project, we envisage and implement a single application that will produce dynamically generated and visually accurate 3D musical instruments that respond to a MIDI input in real-time. That is; a program, which permits you to select a piece of pre-recorded music and simulates the visual and physical performance of one or more of the instruments involved, as the music is played back. In figure 1.1, we illustrate some of the typical applications of MIDI, extending the diagram to encompass this new visualisation functionality.

	fig.1.2 - screenshot of

the MIVI application
	
[image: image2.png]

	
	 Figure 1.2 shows a screenshot of the MIVI application running a piano instrument model. In it, our application is running as the plugin to a host application – Steinberg Cubase VST. Cubase is the industry-standard music composition tool for the modern professional studio and its competences, as such, extend to recording, processing, arranging and even auralising both MIDI and waveform audio. The photo, in figure 1.3, shows the program running on the development system, and directly corresponds to the environment portrayed in figure 1.1. The user, through the attached MIDI keyboard, provides the MIDI Input. Cubase then sends copies of the input to the tone generators (below left monitor), for auralisation, and to MIVI (right monitor), for visualisation. Additionally, the computer can stream, to both these outputs, the pre-recorded notes in the open MIDI file (stored on the computer), which it simultaneously displays in score format (left monitor) throughout playback.

	fig.1.3 – the MIVI

system in action
	
[image: image3.png]

	1.2 application

	
	It is a readily conceded fact that education is of paramount importance to society. Music education, though, is rarely given any amount of priority in today’s classroom. In direct competition with language, science, mathematics and social skills teaching, the value of a musical education is not immediately obvious.

 In retort, many argue that culture – of which music can be crucial factor – is also important to society. Music, however, hones skills beneficial to all of these disciplines. For example, literacy in music is an exercise in mathematics and languages. Membership of any ensemble is an exercise in social skills, discipline and being able to express oneself. These and other reasons have led numerous musicians [44] and sociologists [35] to conclude that music is of prime significance.

“Obstacles usually cited are (1) the lack of funds, (2) lack of instructors, (3) lack of space and [instruments], (4) time conflicts, (5) tacit resistance from private teachers, (6) concentration needed on other instruments and voice, and (7) teachers inadequately prepared. The fundamental reason, however, is the lack of precedent, stemming from the fact that the band and orchestra scores seldom call for the [instrument].”

 In the above quote, House [19] identifies eight obstacles facing the aspirant musician. As an aid to tuition, MIVI sets out to help tackle these problems; (1) by being easily accessible, (2) by not requiring instructor presence, (3) by being virtual and easily distributable, (4) by not restricting tuition availability, (5) by factoring out the human element, (6) by servicing all instruments, and (7) by providing dependable standards of tuition. Furthermore, as we shall see, House’s final complaint is, in part, addressed in MIVI by the default provision of appropriate backing ensembles.

 We will exploit the user input / visual output nature of MIDI and MIVI in such a way that will afford us an interactive tutor system. Simply; presented with music, the user will play it and MIVI should be able to give both guidance and feedback during the performance.

 It should be noted however, that as far as we set out to address these problems, in no way do we present the concept as a replacement for the traditional music teacher. As with other computer-assisted instruction (CAI) software [47], the MIVI application is intended as a visual aid to learning.

	1.3 about the report

	
	This report discusses, in detail, the provisions and concepts of, and surrounding, the MIVI concept, proceeding to document the implementation of a core system, with basic functionality.

 The structures of each chapter and section are presented at the outset of each respective segment throughout the report. However, the overall layout, as implicit in the contents page, is as follows:
 We will begin by reviewing relevant literature and research available on the subject, then documenting both the design and implementation of a software prototype. In these sections, we highlight particular hurdles and problems that were overcome and, if so, how, while occasionally discussing implementational considerations of further programming and extension to our prototype.

 Finally, we will evaluate the project with respect to its objectives, using feedback from musicians, teachers and other experts, and, in conclusion, identify future work prompted by our research.

 The reader should find the source code of our implementation, given in Appendix C, useful. The code has been rigorously commented and indexed with references corresponding to explanatory paragraphs in the report. Such references are given at appropriate points throughout the text.

	
	chapter 2 background

	
	In the last half-century, Music Technology has established itself as a highly respected line of research and study. Much work has already been done across this multi-disciplined area, ranging from electronically-inclined studies into digital signal processing (DSP), through physical studies into acoustics, to more mathematical and melodic studies such as composition through algorithms.

 It is important to ascertain the role computers are taking in today's music and from what springboard, technologically, MIVI's realisation must begin. This will entail a review of previous and current research and technologies in the field of computer music, with special emphasis on human-computer interaction (HCI), musically-driven graphics and computer music performance systems (CMPS).

 The fundamental basis for MIVI will be an interface for the interaction of man, machine and music, and therefore, in addition to an exploration of the technological, it will be worth quickly delving into the psychological, with reference to applications of technology in education .

 Finally, following reviews of all the relevant fields and technologies, we'll take a closer look at a similar project to MIVI, called DIVA [26], and see if the findings of the Finnish team who conducted it, are of use in our venture.

	2.1 MIDI
	Since its conception in 1982, the MIDI protocol has played an important role in many music-related projects, sometimes even to the point of inspiring or prompting them. Indeed, the connection between it and this project goes beyond just the spelling. However, whereas MIVI may be founded on a MIDI base, the goal will require us to develop upon the specification and protocol. It will therefore be wise, in addition to reviewing the MIDI specification and General MIDI (GM) protocol, to consider some aspects that lie beyond their scopes, and the previous attempts to extend them.

	
	2.1.1 introducing MIDI

	
	This sub-section aims to furnish the reader with a basic understanding of MIDI. Contained herein is an explanation of all the concepts and terminology of the protocol, pre-requisite in the reading this report. However, for those desiring a deeper or less specialised overview of the subject, the author recommends the books, mentioned as items [30], [53] and [54] of the bibliography.

 MIDI stands for Musical Instrument Digital Interface and is the technical specification [31] for a language of music - an encoding of music at the semantic level. It contains no audio information or guidelines for auralisation, such as sounds and waveforms, but instead, like a score to a piano, specifies properties like pitch and duration for each note and characteristics like tempo for a whole piece.

	practical uses
	 In the common instance, it allows music to be recorded by a computer, or dedicated hardware, from one instrument, then output for performance by another. The process can be synchronous, by attaching the MIDI-out (output port) of the first instrument to the MIDI-in (input port) of the other, or asynchronous, by having the computer record the signals from the first device to a file, which it can store and play back through the second at any time. The reader is referred to figure 1.1, in the previous chapter.

	SMF
	 A performance can be encoded in this way and stored in an SMF (Standard Midi File), which can, in turn, be transmitted to a MIDI device. A piano, if MIDI-enabled, can then pose as its own pianist and play itself. Indeed, most modern electronic musical instruments now support the MIDI standard – for example, the Yamaha CS1x [55] keyboard or Korg Trinity-Rack
 tone generator.

	multi-timbral
	 MIDI performances can be augmented over time. You could record the right-hand of a piece of piano music, then rewind and record the left. The computer can then carry out the simultaneous playback of the two phrases. The number of total notes (pitches) a device can play simultaneously is denoted by its polyphony. If it is only one, the device is monophonic.

 The number of different sounds (timbres) a device can play at any on time is called its timbrality, where one timbre might be a violin and another a piano, etc. If it is more than one, the device is multi-timbral.

 Note that it is possible, and common, to have a multi-timbral, polyphonic MIDI instrument, composed of both monophonic and polyphonic voices – for example, a 16-part multi-timbral sound module with 128 voices might include monophonic flute and violin voices, as well as polyphonic piano and guitar voices.

	sequencing
	 An SMF can contain the encoding of multiple instruments, even a whole orchestra, regardless of what MIDI input device you use; you can play in a violin – or even drum – solo using your MIDI piano. It is the job of the computer, through a program called a sequencer, such as Steinberg Cubase VST2 or Cakewalk Pro Audio
, to keep time and co-ordinate the performance of every instrument – fulfilling the typical role of the conductor. The sequencer takes the performance (sequence), encoded in the SMF, as input and, when commanded, streams, as output, notes and performance instructions, as MIDI messages, to a MIDI device for immediate execution (often auralisation). An apt analogy to a sequencer is a cassette recorder – allowing both the playback and editing of music.

	communication
	 MIDI messages are very small packets of only a few bytes, which carry information on the note or performance instruction – MIDI event – that is to be played or executed. Each MIDI event is a packet of varying length comprising a single status byte, and zero or more data bytes. An example is the 3-byte Note On message, where the status byte (0x90 in hexadecimal) tells the device to start a note for the active instrument at a certain pitch and velocity (volume), as denoted by the accompanying two data bytes. By contrast, the Note Off message can then be used to terminate it. Alternatively, using a Note On message with null velocity will also stop the note.

	General MIDI
	 Most MIDI devices are capable of posing and performing as several instruments – ordinarily, up to 16 different instruments can be played at once, each receiving messages through their own channel. In 1991, a specification, called General MIDI (GM) [32], specified 128 different MIDI voices (the full list of these is given in Appendix A), which can be assigned to any of the channels. In addition, since percussion sounds do not vary in pitch, it is wasteful to have whole instruments dedicated to a single bass drum or snare drum, etc. The specification therefore describes a standard percussion kit, where note C in the lowest octave is a bass drum, D a snare and so on. For example, the first channel might be set to an Acoustic Grand Piano (voice #1) and the second, a Nylon-string Guitar (voice #25), but another (often the tenth, for percussion) to a Standard Drum Kit.

 An SMF is broken up into tracks, each having its own channel. The subtle difference between a track and a channel is that you can have two tracks with the same channel. Going back to our piano example, the left-hand could be on Track 1 and the right on Track 2, both being sent to voice #1 (piano) on Channel 1.

 This structure is illustrated in figure 2.1. The hierarchy has, as its root, the sequence, encoded in the SMF, which is broken up into tracks that have their own channel and contain all information about MIDI devices, etc. Each track contains all the information about the events from the opening to closing note of the piece, for its respective part.

	system messages
	 A sequencer is normally connected to more than one input or output device. Thus, in music, it is imperative that they cooperate and coordinate their activities with each other, like the sections of an orchestra. Three different types of messages exist to help the sequencer in this pursuit – System Common, System Real-Time and System Exclusive (Sysex).

	fig 2.1 -
MIDI hierarchy
	
[image: image4.png]

	
	 The first two concern the timing of the piece. Whereas System Common messages give the absolute position of playback in a piece, System Real-Time issue the start and stop commands to control it, as well as transmit MIDI clock (tick) messages, which devices can use to synchronise with each other.

 The MIDI specification’s endurance, however, can largely be attributed to the third. Sysex messages allow for unrestricted byte-stream communication through a MIDI connection, between MIDI devices. Originally designed for the ‘bulk dumping’ of settings, or even waveform audio between devices, it has been brought to bear in the real-time environment and has been used by manufacturers to implement controls and functions that are necessary to fully exploit the functionality of new MIDI instruments, but not natively supported by the base MIDI command set. It is, therefore, not necessary to ever replace the specification, but extend it instead.

 As the name suggests, sysex formats are defined exclusively at the system level and, thus, the sysex messages for one device are not necessarily compatible with another. However, the emergence and monopolisation of commercial standards has brought some of these extensions into wider, sometimes universal, use. In the next section, we will briefly look at two such standards, with special attention to their extensions to the GM specification.

	
	2.1.2 MIDI and GM extensions

	
	Two of the manufacturing giants of the music industry, Roland and Yamaha, upon the widespread adoption of the MIDI protocol, recognised both the potential and inadequacy of the GM specification, and seized the opportunity to release their own extensions – General Sound (GS) [36] and Extended (or Expressive) General Midi (XG) [56], respectively.

 The extensions address exactly the same deficiencies of their predecessor and do so using almost exactly the same principles and methods. However, due to the competitive nature of the market, the implementations differ and, thus, most
 XG devices will not respond to GS commands and vice-versa. Therefore, for our purposes, reviewing one will yield as much insight into the other and, under the widely-held conviction
 that Yamaha’s offering is superior, we choose to cover the XG format. Before we review each of the improvements borne by the standard, though, it is important to establish the failing of General MIDI that both companies set out to address.

	deficiencies in the

GM specification
	 Music, as an expressive art, is an imperfect science – it involves and assigns value to nuances, quirks and irregularities – and demands the ability to step outside the norm. As a mature technology, MIDI was introduced at a time of relative simplicity in the computer – it had to be simple and efficient, too. MIDI is thus highly abstract and technical, and, as a medium for expression, crude and inflexible.

 A symphony orchestra conductor will be the first to notice that confining the number of different instruments to 128, as General MIDI does, is extremely crude. When you consider that Voice #41 is not only a violin, but also the MIDI 'ambassador' to all violins in the world, the deficiency is magnified. Properties such as the violin's size, maker and origin - all of which can have a profound effect on the timbre (character) of a note - are instantiated to one generic set of parameters. Imagine the reproduction of a string quartet, where the two violinists on occasion play the same tune. In the concert hall, though we can't distinguish which is which, we are still aware of two violins. On the average MIDI instrument, the waveforms are identical and, once superposed, would sound like just one – albeit either twice the volume or partially phased.

	ensembles and
orchestral sections
	 The proposed solution to this problem, in part, only tends to exacerbate the inflexibility of General MIDI. We notice that voice #51 and voice #52 are not single instruments, but string sections. Seemingly, this is to compensate for the loss in polyphony that would derive from emulating each violin individually. It is also provided as a quick and dirty solution to the problem of the superposed violins that such an endeavour might present.

 Interestingly, however, strings and brass are the only sections to benefit from any adaptation that would permit their usage in an ensemble context. Though, this is more a comment on the quality of the MIDI sounds available when the protocol was introduced. Although considerations of sound quality might deter classical musicians, who will afford themselves a real orchestra for any number of the reasons listed in this section, contemporary artists, particularly of the 80’s, are more tolerant of, and even praise, the synthetic sound of MIDI instruments.

 Nevertheless, although it would be fairly painless to design and implement MIVI as a multi-instrument application, there exists negligible practical advantage to displaying more than one instrument (ie. ensembles) at a time – as discussed in section 1.2, MIVI is principally for educational applications, and teaching multiple instruments simultaneously is merely a recipe for disaster. Neither will this report cover the implementation of either a string or a brass instrument. The reader, however, can assume that ensemble GM voices (#49-#52 and #62) would be reduced to their respective solo visual incarnations. On the other hand, it is conceivable that, in its maturity, and combined with other research projects [22]

 REF _Ref3631985 \r \h
[29], MIVI could one day be used as a conductor training tool.

 Thus, in general, one of the biggest criticisms of the specification was the lack of freedom of expression in terms of both instrument varieties and individual instrument usage.

	improving upon

the GM soundset
	 Instead of just increasing the number of available instruments to more than 128, Yamaha’s research department opted to make the voice list for XG multi-dimensional. So, for each instrument, there can be up to 128 sub-categories, drastically increasing the total number of available timbres to 16,384. An example structure of XG's Violin voices, taken from the Yamaha CS1x synthesizer [55], is illustrated in figure 2.2. It should be noted that only a small number of the 128 possible sub-categories actually differ in character from that of the original instrument and, furthermore, that any variation in timbre is the result of the original sound being put though an effects processor, as opposed to coming from a different source.

	fig 2.2 - Yamaha’s XG
extension to GM
	Voice 41

Bank 0

Basic Violin

Bank 8

Slow Violin

Bank 16

Bright Violin

Bank 35

Octave higher

Bank 36

Two Octaves higher

 This is clearly an improvement on the original specification, and manages to maintain legacy compatibility with General MIDI, but is still not ideal. Ideally, we'd want categories like 'Stradivarius Violin' and so forth. Sadly, their inclusion would be of limited use, since today's sound synthesis engines are not able to reproduce tones of sufficient realism, especially when applied to solo string instruments. Our exploration of MIDI extensions, thus requires a review of current synthesis techniques.

	2.2 sound synthesis

	
	From the principle that graphics and sound are intrinsically linked, often as products of the same device – hence, follows the visibility of audible objects and vice-versa – our exploration of the visual side of music will benefit from an analysis of the audible.

 In our endeavour to recreate instruments, we must know how they work to produce sound. More to the point, to meaningfully teach these workings, it is imperative to understand how the instruments are manipulated to produce not only sound, but also music.

 Initially, this will involve a brief discussion of instruments in the real world. However, both instruments and sound generation techniques have already been extensively studied from an aural standpoint – a core component of the Music Technology field is the pursuit of more realistic and expressive technologically generated sounds and music – and thus, we shall cover, in more detail, previous translations of the art into science.

 As we shall see, much of these aural enterprises can give us guidance in our own endeavour.

	
	2.2.1 instruments in the real world

	
	Today, a large proportion of music listening is done with the absence of visual stimuli. This is made possible by the nature of sound – although involving the movement of objects, which are often visible, sound is the result of miniscule vibrations, undetectable to the human eye. The irrelevance of the visual, means that sound is definable from base physical principles. Music is reduced to simply the manipulation of these sound waves and we must thus consider the instrument from this aspect. It should be noted that this is a centuries-old area of study, and much more is known about it than is permissible or relevant in this report. The author recommends Rossing [39] as a truly remarkable book, yielding deep insight into the subject.

	the physics of music
	 A violin, for example, uses the friction of a bow to induce oscillations in a string. In this form alone, the induced sound waves haven’t the amplitude (in essence, volume) to be heard, but the resultant minor vibrations of the violin’s bridge permeate into the hollow body of the instrument, where the larger internal surface area gives rise to an amplified wave. This wave can then reflect off the interior of the body several times, before leaving through the f-holes of the violin. Their collision with the human eardrum causes physical displacements, which are translated into electrical impulses and sent to the brain. The brain then interprets the frequency and variations in amplitude that it receives, into the commonly recognisable violin sound.

 This process is similar to that in the other members of the string family. Furthermore, pianos and guitars, as ‘stringed’ instruments use much the same process – differing in only the initial induction of the source wave: a piano string is hit with a padded hammer, and a guitar plucked with a finger.

 Farther afield, even more diverse families employ degrees of the same process – both brass and woodwind instruments rely on the reflection of waves in a resonant corpus. This time, the body is an open-ended tube and the blowing of air induces the wave. Whereas for brass, this excites the resultant wave directly, for woodwind, it is used to excite vibrations in a reed that, in turn, produce the resultant wave.

 Each method contributes towards the unique timbre of sound produced by the instrument, but it should be obvious to the reader that the methods themselves are not so different within certain instrument groups.

	
	2.2.2 sample-based synthesis

	
	Most modern sound synthesis techniques are sample based – that is, for each MIDI voice, the notes have been digitally recorded from a performance in the real world. However, recording a quality sample for all notes is costly – a high quality sample for each piano key (88 in total) would fill the average instrument's allotted memory, leaving little or no room for the other 127 voices. Instead, one pitch is recorded and stored in memory, and by electronically varying the playing speed (or frequency) of the recorded pitch, the other notes can be simulated. Generally, however, as you get farther away from the original pitch, the electronic ‘transposition’ results in a noticeable loss of realism.

	
	 Therefore, for a higher quality voice, a multi-sample is used. A piano voice, for example, might have the C note of each octave recorded in memory and use it to produce the rest of the octaves’ notes. The higher density of notes sampled, the better the quality the reproduction. In the extreme, some digital pianos do dedicate their entire memory to one or two piano voices, sacrificing variety for quality. Note, however, that they also sacrifice their adherence to the General MIDI protocol.

 The pinnacle example of sample-based synthesis came recently, in the form of Hans Zimmer
, one of the most popular composers in Hollywood. Speculating, to accumulate, he booked the London Philharmonic Orchestra for an extended private session, during which he proceeded to journey around the orchestra, instrument by instrument, section by section, and sample every note and phrase he (or they) could imagine. At the end of the session, he had stored gigabyte upon gigabyte of audio data, and has since managed to remove the need for all but the most trivial orchestral participation in his movie scores. It is also worth noting that the hardware used by Zimmer does not employ any accepted instrument / sample naming convention – such as GM, GS or XG – other than that set out by himself.

 In section 2.4.1, we compare MIVI to video tuition and note that video is not as flexible as the real instrument or a simulation thereof. Zimmer’s approach similarly suffers from this inflexibility – any musical phrase he does not have, he cannot synthesise without referring back to the orchestra.

 Sample-based synthesis, by itself, exploits no implicit similarities between instruments or their families. In addition to extending the voice list for General MIDI, GS and XG both tried to develop on the freedom of expression available to the instruments of the GM soundset, by using sound effects processing. Although not evident in the violin voice, in figure 2.2, these extensions do acknowledge the existence of such implicit relationships in other voices. In figure 2.3, which shows voice #25 – the Nylon-string Guitar – the readers should notice the Ukulele in bank 96.

	fig 2.3 - Yamaha’s XG
extension to GM
	Voice 25

Bank 0

Nylon-stringed Guitar

Bank 16

Nylon-stringed Guitar 2

Bank 25

Nylon-stringed Guitar 3

Bank 43

Guitar Harmonics

Bank 96

Ukulele

 The explanation is simple and inherent in the architecture of the XG system. Effects processes are simply manipulations of the sound at the waveform level. From the previous section, we noted the relative similarity of sound generation techniques. In this instance, the step from a Nylon-stringed Guitar to a Ukulele is trivial and their actual composition is very similar: they both have multiple strings, wooden bodies, etc. The only difference could be in the shape of the resonant chamber, the material of the string or type of wood. The generic XG effect process has modelled the consequence of these altered parameters and resulted in the abstraction of two instrument timbres to a common source waveform – an instrument has been added without adding a sample to memory.

 In the next section, we talk about the ultimate extension of this abstraction – the entirely synthetic production of sounds.

	
	2.2.3 physical-modelling synthesis

	
	Using the precise knowledge of the processes inherent to real instruments, as introduced in section 2.2.1 and detailed in Rossing [39], we can artificially fabricate the waveform by generating basic wave oscillations and simulating the appropriate reflections, refractions, amplifications and dampening, etc.

 Furthermore, once this is achieved for a violin, we can also adapt the algorithms for other string instruments relatively painlessly. It then also follows that the combination of more adaptation and further innovation would yield synthesis techniques for other instrument families and genres.

 This is not a new theory and has been the subject of considerable research and successful implementation already. One research project, in the late 90’s, was successful and mature enough to breach the academic boundary and enter the commercial market – Yamaha and Stanford University’s illustrious SONDIUS XG Virtual Acoustic Modelling system [57].

	SONDIUS XG
	 Contrary to what the name suggests, SONDIUS XG has no voice naming hierarchy as in its namesake, XG. Instead, there is a more implicit system of inheritance between voices, dictated by the modelling algorithms that they employ.

 Before this, the very acceptance of a convention, such as orchestral families, already recognised the similarity of a group of instruments. In both cases, the distinctions are based on both the method each family uses to produce sound, whether it be plucking, bowing, blowing or hitting, and other structural properties of the instrument – for example, its material, such as wood or brass.

 For physical-modelling techniques, like SONDIUS XG, these families translate conveniently to synthesis models. String instruments, like violins, violas and cellos, as well as most keyboard instruments, draw upon algorithms, which simulate the sound waves produced by the oscillations of a string upon plucking, bowing or hitting. Wind instruments, like oboes, clarinets and flutes, rely on the modelling of sound waves passing down a wood or metal tube. The SONDIUS XG system also suggests the possibility of partitions based on the driver and resonant body components, and further abstracts them from their physical models.

	fig 2.4 - the SONDIUS
XG architecture
	
[image: image5.png]

	
	 Because most strings use a bow, the respective model is invariably generic: an algorithm coupling friction-based scraping, and string oscillation. The difference simply lies in the parameters – the coefficient of friction, the length of the string, etc. This implicit categorisation in the system’s naming of instruments as combinations of Drivers and Resonant Systems, is illustrated in figure 2.4. Note that one remarkable feature of this architecture is that any combination of driver and resonant system can be used, allowing for imaginative instruments such as breath-driven violins.

	fig 2.5 - the string

family: (a) violin, (b) viola

(c) cello, (d) double bass
	
[image: image6.png]

	
	 Furthermore, although it may be musical blasphemy to say that a cello is simply a big violin, visually, this is essentially the case (as can be gauged from figure 2.5). Thus, physical modelling can apply the same generalisation to the resonant body, simply altering the dimensions to enable the correct internal reflection and refraction of the sound waves.

	abstracting instrument

composition
	 This extrapolation is especially beneficial when we consider that the driver can change part-way through a piece of music. A violin, for example, can be bowed or plucked. Indeed, a cello can even be bowed, fingered and plucked simultaneously.

 However, on the score, whereas all this requires is a comment above the stave saying arco or pizzicato (respectively), MIDI has no formal method of encoding this performance direction. To simulate it, you must assign the relevant music to a separate bowed violin instrument (voice #41) or plucked violin instrument (voice #46), invariably over two different MIDI tracks or channels. In MIVI, if we were to automate which instrument is displayed (or driver is used), based on the incoming MIDI data, this might create a problem. For this reason, amongst others (discussed later), control over MIVI’s instrument selection will rest with the user. Aside from a small burden to convenience, the impact is minimal, in the context of MIVI’s application
.

 As regards resonant bodies, the string family is perhaps too simple an example. By inspecting the brass family, we see that our categorisation of instruments should be more involved than simple segregation into families, and we are again encouraged towards the driver / body split. However, whereas forced air (or pneumatics) is the driving force, universal to almost all brass instruments, the resonant body and method for controlling the pitch can, this time, vary as well. For example, take the trombone with its slide as opposed to the trumpet with its valves.

	
	

	2.3 performance

	
	Returning to the problem of differentiating violins in our string quartet scenario, posed in section 2.1.2, the sound of an instrument in the real world is also varied by the manner in which it is played – the proficiency and technique of the performer, or lack thereof. Indeed, much of what tells us that something is real (or human) is, cynically, what is imperfect about it – the gasping breath sounds of a trumpeter, the pale scraping of a bow, sliding too lightly across the violin string, etc.

 Computer aided music is often condemned for its lack of expression, which, though one could blame on DJ's of today's music scene, is more likely attributable to the MIDI specification. Indeed, it has often been criticised for being too centred on keyboard instruments and interfaces [26], resulting in an expressive model which is little more advanced than variation in volume – velocity.

 Performance is central to our goal – MIVI is an instrument performance tutor. The lack of expression in MIDI, also identified in section 2.1.2, must be overcome if we are to instruct in performance of any instrument save the piano.

	
	2.3.1 expression

	
	Research by a number of institutions has produced CMPS's, or Computer Music Performance Systems, which are designed to record more expression in music, allowing the computer to more accurately emulate the human element in performance. These systems can also bring expression to instruments where it wasn't previously found, such as synthesizers.

	computer music

performance systems (CMPS’s)
	 FORMULA (Forth Music Language) [2] is such a system. It was an attempt, in the early 90’s, to build upon the MIDI protocol – to add emotion and expression, etc. to the audio output, through the creation of a music programming language. On p.23 of the paper, Anderson and Kuivila also briefly mention the potential of visual output, but concede that the hardware of the time, combined with their system architecture, would introduce ‘unacceptable delays’ and prevent a meaningful exploration of the medium.

	
	 There are two immediate problems involved with promoting such data to the visual layer, in an application like MIVI. The first is technical; "How does one show emotion in graphics?” The pursuit of an answer to this could be defined by the history of ‘Art'. Realistically and, perhaps, crudely, the only way to do it would be to have a representation of the performer and his face as he (or she) plays the piece. Indeed, the face is often used in art as an interface to the emotion of a painting’s subject. It is, after all, not the instrument that humans perceive as having the emotion, but the player.

 The other problem is of practicality. In an educational program, the useful applications of carrying expressive performance directives through to the visual layer appear minimal, since expression is often an aggregate of one's own soul and experience – tacit knowledge, which is difficult, if not impossible to teach. However, there can often be more than one method, or technique, available for playing a note or phrase, which is important for the performer to be aware of.

	
	2.3.2 technique

	
	Technique, although related, is not synonymous with skill – it is a means to skilfulness. Although, on a piano, teachers will train students to use particular fingers on particular occasions, it need not always improve the quality of the performance. Instead, it makes the performance easier, so that the move to the next echelon of ability becomes more achievable.

	fingering
	 One aspect of performance that instantly presents itself, when stepping outside the piano, is fingering choice. A guitar, for example, has six strings, and the dynamic range of each overlaps with not only the adjacent, but beyond that as well. There thus exists a choice of methods to finger a single note, and some will be easier than others. If we are to display the instrument as it relates to the score, we must choose one of these methods. However, as an educational tool, we must make sure that our choice is suitable for the learner.

	fig 2.6 - table of
guitar fingering
	E (24)

25

26

27

28

29

30

31

32

33

34

35

36

B (19)

20

21

22

23

24

25

26

27

28

29

30

31

G (15)

16

17

18

19

20

21

22

23

24

25

26

27

D (10)

11

12

13

14

15

16

17

18

19

20

21

22

A (05)

06

07

08

09

10

11

12

13

14

15

16

17

E (00)

01

02

03

04

05

06

07

08

09

10

11

12

	
	 In figure 2.6, we illustrate a diagram identifying the possible fingerings for various pitches on a guitar fret, where each number denotes the distance from the fundamental pitch (in semitones) – in this case E(00) – and each row is a different string. One can see the repeated occurrence of equivalent pitches across several different strings (equivalent C(20)'s have been emphasised). The problem facing the performer, and – by transitivity, our visual interface – is which to choose at any one given time.
 In the above scenario, let us assume that we want to play the C and that the succeeding note is an A(17), so, if possible, the algorithm should, for simplicity's sake, avoid changes of string or hand position. Intuitively, it would be best to pre-emptively place the first finger on an A, and the second (or third) on an adjacent C, so the transition can be made painlessly and involve only a simple removal of the extraneous finger. This rules out the C on the B-string, since no such A exists, leaving two options, which – under our current constraints – are equally attractive.

 So, we introduce another constraint - that of sound quality. Plucking an open (un-fingered) string produces a much 'cleaner' sound than if the player were to finger the note by depressing a lower string nearer the bridge (towards the right of our diagram). Simplistically, this gives us the heuristic: the further left the number on our diagram, the better the quality the tone. Readers interested in implementing a more detailed set of constraints that account for quality are referred to Taylor's [50] paper.

	generic fingering
algorithms
	 Incidentally, in the case of other fingered-string instruments, like the violin, violinists are encouraged to choose fingerings in preference to open strings, in order to maintain a uniform sound quality across all notes. Thus, for applications servicing multiple instruments, such as MIVI, it will be important to give careful consideration to the domain of their fingering algorithms. For example, how much of a guitar fingering algorithm might translate to a violin application? Even on a lower level – how much modification is required to adapt a violin-fingering algorithm to a cello? Does the introduction of the thumb, in this case, present a large problem, or can we simply treat it as a fifth finger? We leave these exercises to the reader and referenced literature.

	recursive

algorithms
	 Returning, and restricting ourselves, to our guitar scenario; we have seen, with just two constraints, a decision can be made for each note (the previous decision has been shaded in the diagram). Notice, however, that we have also made an assumption (the position of the succeeding A), which allowed us to further constrain the decision. A note's reliance on its successor suggests a ‘lookahead’ is called for – the succeeding note’s position must be calculated before the current note’s and, of course, the same is true for the succeeding note. This recursive relationship will propagate the decision to the final note of the music, where a decision, based on no successor, must be arbitrarily made. The results then cascade back to the initial note. Thus, we see that, in this implementation, although implementable using a constraint-satisfaction algorithm [18], fingering calculations cannot be a real-time operation, but must be pre-processed.

 This is how the DIVA system (discussed in the section 2.5) works. The music is analysed and all the fingering positions are worked out and stored before the performance. It is a simple approach and will result in a polished performance, depending on the algorithm’s constraints. It requires, however, a pre-processing step before each new piece of music – the duration of which will vary depending on the complexity of the piece and the number of musicians in the ensemble, and could, potentially be quite costly. In comparison to the typical human approach, though, the duration of this step will be drastically smaller than a standard ensemble’s equivalent during rehearsal sessions.

 However, let us consider the human performer more closely. The player’s approach depends on their level of skill and experience, most notably in the sphere of sight-reading. A lesser-experienced musician might play the piece through once, annotating the score with fingering observations as they occur, restarting, each time, to verify them – the human equivalent of the DIVA system.

	finite lookahead

algorithms
	 An experienced musician, on the other hand, might be able to perform a small lookahead in his mind and anticipate optimal fingerings, similar to a Grandmaster of chess deducing the next seven or eight moves before they happen. This latter tactic gives us insight into how to implement a real-time fingering system. By restricting the lookahead to a limited amount and forcing the arbitrary decision before reaching the final note, we could conceivably avoid the heavy load on the processor, enabling the decision to be taken as the note is played.

 Indeed, it is self-evident that the fingering for the final note in a symphony movement has little or no influence on that of the first. We can apply this analogy on much smaller intervals and, by selecting a suitable lookahead size, in relation to these intervals, not only reduce the processing overhead sufficiently to allow for the decisions to be made in real-time, but forego any significant hit in performance quality. There are several points in a score where influence does not propagate, such as rests (silences), and less critical points where even more involved fingering shifts are less costly, such as following long notes, or stretches of repeated notes, where thinking time is more abundant – both are examples of good lookahead limits, that occur frequently throughout most pieces.

 However, in the absence of such appropriate junctures, an algorithm might have to force a lookahead limit in order to prevent hogging of the processor, thus avoiding glitches in song playback. In this case, a decision is forced, for the current note, based on less than all the facts.

	expert systems
	 Such decisions can often be simplified by the use of expert systems or neural networks, such as Bayesian Networks [23] or Hebbian Learning [40] (respectively), where instead of simple deterministic choices, statistical reasoning is employed. Hence, after a modest lookahead, though we might not be able to say for certain what the best choice is, we have statistical weights denoting which choice is most likely to be the best choice. Bayesian Network systems that allow for learning, such as BUGS [45], can even be combined with cached experience, that can assist us further, by basing the fingering, for a phrase of finite length, on what action was taken last time the question, or similar question, was posed.

	a hybrid
fingering algorithm
	 Using a similar principle of learned experience, Sayegh [41] successfully employed the Optimum Path Paradigm (OPP), an approach based around constraint satisfaction, to tackle the fingering problem in stringed instruments. Taking the number of strings to be S, the number of playable notes on each string, N, with NT (= S × N) representing the total number of finger positions possible, the algorithm first populates an NT × NT matrix, W, with the cost of every possible transition between fingerings, penalising string and hand position changes – as in our original example. The matrix can then be queried one or more times, given a sequence of notes, to produce a set of solutions. All existing solutions are then combined to form a weighted, directed graph (see figure 2.7), which can be solved in polynomial time using the Viterbi algorithm [52], a refinement of the algorithm for finding paths of least cost by Dijkstra [15].

	fig.2.7 – Sayegh’s use

of weighted, directed

graphs in the sequence

G, A, C, E
	
[image: image7.png]

	
	 For a classical guitar (S=6, N=36), the number of calculations to populate W is a phenomenal 216 × 216 = 46,656. Unfortunately, aside from a trivial identity mapping, no ‘optimising’ observations can be employed to streamline the process – fingering transitions are not normally commutative. However, the algorithm need only be executed once per instrument – the matrix can be stored for use in the future.

 Sayegh refines the approach by introducing a second stage, based on Hebbian learning [40], a form of expert system. He uses a second matrix of equal dimensions, W', the entries of which are initialised to zero. The results of the first stage then go through a learning phase, using W to generate responses to various training material in the form of sequences of musical notes. Each time the algorithm suggests a transition between two fingerings, the corresponding entry in W' is incremented by 1. After a sufficiently large sample input, the new matrix represents experience, which can be used to base fingering decisions on, either solely, or in addition to the original matrix. The accuracy of this sort of Hebbian learning (as with Bayesian Networks) is often difficult to accept from base principles, and those new to the idea often benefit from practical and quantative examples, which the reader should be able to find in most of the books on the subject [23]

 REF _Ref3632372 \r \h
[40].

	progressive

algorithms
	 In MIVI, we are not designing a playing aid, but a teaching aid. The performers – in this case, guitarists – need to learn how to apply the constraints and work out fingering themselves, and should not become reliant on the presence of a computer. The constraints should be considered equivalent to 'playing tips and tricks', and can be presented as such in the program. Therefore, given a piece of music, the user should be able to specify which techniques the computer employs, and thus which to tackle learning themselves. The true beginner starts with none, possibly using only his fore finger to adjust the pitch of his instrument, and can then introduce the 'tricks' one-by-one, adding them and advancing at his leisure. Furthermore, when the choice of employing a specific technique conflicts with that of another, or represents a different – as opposed to 'better' – practice, the decision that must be made is one of playing 'style'. Sayegh provides a convenient method of implementing such a system, with each set of constraints (or playing style), represented by a pre-compiled matrix.

	playing style
	 Whereas the 'tips and tricks' indicative of a playing style might be defined by the constraints of the algorithm's first stage, an expert guitarist's playing style might be encoded by running just the learning stage on them, instead of the algorithm – getting them to manually increment the contents of matrix M', as they make their own decisions, given the learning material.

 Hypothetically, a 'complete' implementation would not only allow you to define sets of constraints corresponding to the playing styles of guitarists (John Williams, Eric Clapton, BB King, etc.), but also more general sets, optimised for their genres (respectively: classical, rock, blues, etc.). Simply restricting the learning phase's training set to pieces in the required genre could develop such genre-orientated sets.

 The initial implementation of MIVI, documented later in the report, will not include such performance memories and fingering algorithms. However, when it becomes time to codify our flute, we shall see that a simple fingering decision is required. Furthermore, we shall attempt to ensure that if – or when – the MIVI system is extended for other instruments, such as the guitar, the architecture is able to support the inclusion of fingering algorithms.

	
	

	2.4 education

	
	The awkward and visible sign is the syllabus, a table of contents which lays down what the student is required to do and what is examined… The syllabus narrows the students vision of the edge of knowledge and cuts him off from precisely those fuzzy areas at the edges of subjects that are the most interesting and rewarding.

Christopher Small, p.186-7 in Music-Society-Education [44]
The moral of this fable is that, if you’re not sure where you’re going, you’re liable to end up somewhere else.

Robert Mager, Preface to Preparing Instructional Objectives [28]
Today, when it comes to learning an instrument, there is a multitude of teaching methods available to the music student and, as a player of several instruments, the author has much experience in this role. In this section, we give a concise and critical history of the academic field, with focus on the practises of musical instrument tuition and use of computers as an adjunct to education.

	
	2.4.1 music education

	
	Tradition demands [24]

 REF _Ref3632518 \r \h
[35] the tried and tested technique of one-to-one – teacher to pupil – lessons on a regular and frequent basis. During daily, weekly or fortnightly lessons, the pupil’s performance is assessed by the teacher, whose competence then determines the quality and availability of positive critical feedback. Furthermore, the instructor also sets the syllabus, perhaps via an examining body, and suggests homework and beneficial extra-curricular activities. It is in this way that the author has learnt to play the violin.

 The strict scheduling of lessons and proliferation of deadlines and exams can, however, contradict the rationale of music itself – to be an enjoyable and entertaining occupation. After all, for most people, playing music will be considered a leisure activity. The two passages, given at the beginning of section 2.4, are quoted from Swanwick [48], who is but one of many scholars [17]

 REF _Ref3632518 \r \h
[35] who have arrived at this conclusion.

 Additionally, and often more importantly, the expense of expert tuition can sometimes be prohibitive [19]. In the case of many instruments, especially during the sometimes painfully slow early stages, it can be difficult to identify what your money is paying for.

	the self-taught

approach
	 For some, this might persuade the student that a self-taught approach is more financially viable – if only to get them to a stage where they can evaluate the merit of expert, third party tuition. However, even at the individual level, there are a number of different approaches, many complemented by commercially available teaching aids.

 Naturally, the first is the bloody-minded, do-or-die approach. In the case of learning to swim, this involves jumping in the deep end and, more often than not, results in either drowning or the somewhat crude and expedited erudition of the fundamentals of swimming – namely, the doggy paddle. In the case of the aspirant maestro and, at one time, the author, this might involve a complex piano sonata, Bach for example, and practising until they can play it.

 This approach will only work for some, notably pre-seasoned musicians, and, although coarse and cursory, will elevate the subject’s proficiency across a much larger repertoire than simply the chosen piece. Indeed, once one has deciphered Bach, little stands between them and most other Baroque piano music, and this is the scenario, respectively, for many other genres.

 However, music is an age-old pursuit, and it is naïve to think that just the score and the instrument will endow one with enough experience to make you a maestro. Indeed, the score has been as heavily criticised [35] as credited for its provision of information and encapsulation of the performance. As in the extreme of our aquatic example, one may be able to swim, but not necessarily to swim well.

	the explicit, the
implicit and the tacit
	 As an art, most notably a performing art, musical knowledge extends beyond the explicit – what is written on the page. In this way, traditional tuition will always have an advantage over the entirely self-supported approach, for it allows the elicitation of implicit knowledge – that which can be articulated but isn’t – and tacit knowledge – that which can’t – from the expert to the learner. So, whereas the self-taught student might be able to play the music, they will be ignorant of tips, tricks and shortcuts, to allow for easier playing and more freedom to express themselves – another defining characteristic of art. Indeed, for many instruments, such gaps in knowledge will inhibit the student from moving to higher echelons of play. Moreover, for instruments less intuitive than the piano, the lack of knowledge and guidance about how to equate the notes on the page to the instrument can severely hinder, often prevent, even the slightest progress.

 Music, incidentally, is the only art form requiring literacy [35] – whereas a painter need only apply the brush to a canvas, a musician is reduced to working through a layer of abstraction – the score. As we saw in section 2.1, such obstacles can be compounded with further layers, such as MIDI.

	teaching materials
	 Therefore, when teaching oneself, a natural step is to find literature on the subject. In searching for such secondary materials, one is seeking an expert who has tried to put everything they know on paper – both stating the explicit and articulating the implicit, so that it is, in its new form, explicit. To what extent the expert has achieved this goal, determines the relative quality of a material, and there are several different approaches to the problem available.

 When one is looking for such literature, as this author endeavoured to do when learning the guitar, the sheer variety available is daunting. In its infancy, this market was dominated by books [34] where the expert and publisher employed text and nothing else. Soon after, these were superseded by ones [33] containing simple diagrams to help tackle explanations of fingering and posture, etc. Then, with the advent, and relative cheapness, of black & white [51] and, later, colour photography, we have books advertising the “all-visual approach to learning to play the [instrument]” [10].

	visual learning
	 In music, the importance of exposure to the visual aspect of playing an instrument can sometimes be as important as the audible aspect – the classic 'Monkey See, Monkey Do' philosophy is actually of benefit in this case and has been formalised, in research, more than once.

 Chappell [11] states that the ability to internalise music (to hear, or picture, it in one's mind) is of considerable advantage in the process of developing musical skill. Nevertheless, other studies [1]

 REF _Ref3633196 \r \h
[16] show this skill to be present in only a handful of the world's greatest musical geniuses.

 Ben-Or [4], whose views on the subject are widely held, states "If one can really perceive a passage of music with all clarity and represent it to oneself mentally as it relates to the instrument, then there is no obstacle left for the body to freely express it in sound". Thus, to present music in a visual 'instrumental' form, pre-converted from its abstract score format, should remove a number of such obstacles.

	pictures and
illustrations
	 Static visualisations, though a step in the right direction, often do not convey the subtleties of playing the instrument. On a purely technical level, pictures can rarely capture motion. For a simple example, the book may illustrate 3 key stages of strumming on a guitar; the up, the strum and the return to the default hand position. In all, the strum should last 1 second. With the average human eye, working at a frequency of 72Hz (72 pictures a second), it is up to the individual to anticipate 69 of them, or 96% of the motion.

 Strumming is a relative simple procedure and most, if not all, beginners are able to master it after but few attempts, allowing books to economise in the early stages. However, more involved motions, that should be accompanied by even more enhanced illustrations, are, instead, usually accompanied by none. Though the cynic might put this down to the price it costs a publisher to print pictures, the true reason is likely to be the limited level of information expressed in only one image. It simply isn’t plausible to express, in a page, complicated techniques where 10 or more key stages, each shot from multiple angles, are required to deliver a true understanding – a deficiency compounded in some books by a tendency to illustrate the instrument from the listener's view, rather than the players, forcing a translation, this time of geometry, on the learner.

 Another, more general failing with 2D (diagrams) and static pseudo-3D (photos / illustrations) material, is the lack of the fourth dimension of time – a reader, following examples, note by note, cannot gauge his progress, since although they are playing the right notes in the right manner, they are not aware of temporal aspects of the piece. In the case of tempo itself, the speed (or lack thereof) of their performance is likely to be lower, allowing for deceptively easy playing.

	audio examples
	 Therefore, some books are accompanied by an Audio-CD [10] that demonstrates what the reader should be reciting. This helps to a great extent, but still lacks cohesion, in that, although the music on the page may be recognisable in the playback, the process that connects one to the other still relies on the quality of text and pictures, and requires some quick-thinking on the reader’s part. Slack [43] also recommends the use of audio aids in music education, but stresses the importance of accompanying explanation
. As far back as 1964, he advocated the augmentation of audio with visual aids [43] in the learning process – extolling the virtues of being able to zoom in and focus on parts of the instruments. Thus, as the technology became available, the trend took us from the written word through the spoken and illustrated, to the motion picture.

	the motion picture
and MIVI
	 This philosophy is not new to education, and has even been brought to bear in the form of multimedia music tutorials - CD-ROMs of text, pictures and video demonstrations. Videos are digitised film, which is to MIVI what the Audio-CD is to MIDI. Instead of a data stream, like videos and CD’s, MIVI will be built on an object-oriented structure for performances. Where MIDI can tell you the pitches, and volumes of each note plus allow you to alter tempo, etc., MIVI will draw upon this to provide total-immersion graphical playing environments, with editable angles, magnification and speeds plus allow the isolation of a single instrument and its components, for closer scrutiny.

	fig.2.8 - domains of education methods
	
layperson

beginner

amateur

expert

observing peers
(

explicit tuition
(

self-taught media
(

trial and improvement
(

MIVI
(

MIVI with performance knowledge
(

	
	 In figure 2.8, the common stages and routes to musical expertise, as discussed in the previous paragraphs, are summarised with relation to their competences. Some features of the table are worth mentioning. Firstly, it is clear that when one becomes an expert, tuition is no longer required, and development now relies on a self-supported exploration of music and performance, although possibly with external influences from other performers. Secondly, we conclude that a degree of tacit knowledge, not serviceable by oneself or media, is required to achieve expertise.

	
	 It should also be noted that the table holds no information relating to speed, ease or expense of any particular method, or combination of methods. Given the problems with current self-tuition materials, and yet, also those of expert third-party tuition (introduced in section 1.2), most learners demand the latter. It is hoped that MIVI, by plucking some of the advantages of the third-party, will close the gap between the two – in a sense simulating a virtual music teacher, for the earlier stages.

 As Roland – a world-renowned musical instrument manufacturer – states [38], arguing a similar case for its own interactive tutoring products, “[M]usic learning with private lessons begins with 30 minutes of excellent guidance and coaching. But, now a crucial difference takes place. Instead of the regular, routine play-through of the school ensemble music, the student goes home to a week-long period of unguided, occasional practice.”

 They continue by identifying the distinctions between teacher and tutor – the first, is to provide direction, the second, to guide them on their journey. In their case and ours, the respective products’ competences fall into the latter.

 The promotion to the former might involve the inclusion of implicit and explicit technique theory, including the migration of expertise from the real to virtual incarnations, which has resulted in the division of MIVI into two domains in figure 2.8. The first represents the intended capabilities of the implemented MIVI system as documented in this report; introducing the student to the instrument
 and teaching the student how to relate the score to said instrument. The second builds on the first with the ominous requisite of ‘performance knowledge’, and was discussed in the section 2.3.2.

	
	2.4.2 computers in education

	
	The modern buzzword in multimedia education is ‘interactivity’. Having argued the ‘learning by seeing’ case, many of the same principles can be, and are, similarly employed in advocating ‘learning by doing’ [9]

 REF _Ref3631745 \r \h
[47]

 REF _Ref3632535 \r \h
[48]. Using interactive materials, not only can the user get instruction, but feedback too. The interactive device can have algorithms to analyse the user’s performance and give qualitative and quantative feedback on their errors, as would a genuine tutor.

	games, simulations
and drills
	 E.R. Steinberg [47] mentions several methods of interactive learning through the use of the computer. ‘Drills’ are the purest form of Computer-Assisted Instruction (CAI) and simply aid the memorisation of symbols, such as the periodic table, or connections, such as our score note to key mapping, through the standard stimulus / response format. Even in this simple context, detailed feedback is possible, since the computer can tell the learner what they got wrong, where they tend to fail (statistically) and to what extent they are in error. Furthermore, the execution of the drill can be tailored from learner response – getting harder as they do better or vice-versa. Drills, however, only test knowledge already present in the user.

 Either alternatively or in combination, E.R. Steinberg advocates the use of ‘simulations’, where the learner is presented with a virtual representation of the subject material. She states, “Insights about complex scientific principles often come from experience with such concepts in an interactive environment”.

 A flight simulator, for example, allows trainee pilots to familiarise themselves with the cockpit of an aeroplane without the expense (in terms of money, space and time) of a real plane or flight.

 Closer to our context, the use of typing tutor software is also an embodiment of this concept. As a drill and a simulation, it is able to show the user what to do, regulate the act itself and give qualitative and quantative feedback on their performance.

	eliciting tacit
knowledge
	 We have seen how interactive media can replace the implicit teachings of a music teacher, but how can we extend this to tacit knowledge? As it becomes more widely acknowledged that we are living in an age where information is paramount, industry looks to retain such knowledge, without necessarily retaining workers, through Knowledge Management and Information Systems.

 One approach is to concede that tacit knowledge cannot be encoded and copied, but ‘cloned’ instead. In our case, instead of telling an expert guitarist, to write a book about how the reader should play the guitar, which we have shown will not implant his expertise in the reader, invariably loosing something in the translation, we simply tell him to write a book about how the expert plays the guitar himself. Although the knowledge cannot be copied, the renditioning of a particular piece of music (the performance) can be. So, we instruct the learner to recreate the performance(s), trusting that, in their efforts and attempts to execute the task, the learner will derive the tacit knowledge for himself and will, in future, be able to sub-consciously apply it to the generic music score.

 Thus, returning to our discussion on the relative merits of MIVI over existing soft and hard literature we see that, whereas existing teaching material is often restricted to a specific genre, such as “Jazz Piano” or “Blues Guitar”, MIVI should have the capacity to cross these boundaries, simply by selecting a MIDI file and performance memory from the desired genre.

	2.5 the DIVA project

	fig.2.9 - the DIVA
system in action

	
[image: image8.png]

	
	In this section, we will introduce the reader to DIVA, a project closely linked with MIVI, and review some of the core principles and ideas surrounding it. We will also discuss the relative merits and shortcomings of DIVA, as well as the isolate the differences between it and our own endeavour, MIVI. Other more specific aspects of the DIVA project are covered elsewhere in the report, as they become relevant to our own endeavour.

	
	2.5.1 DIVA history

	
	Beginning in 1992, a team of scholars, from the Helsinki University of Technology, embarked on a number of research projects [21]

 REF _Ref3631992 \r \h
[22]

 REF _Ref3631774 \r \h
[26]

 REF _Ref3634022 \r \h
[49] that, in 1997, culminated in the design and development of a Digital Interactive Virtual Acoustic (DIVA) environment [26]. This involved the creation of a totally immersive 3D environment, embodying the performance of a small Virtual Orchestra of Virtual Musicians, led by a human conductor, with physically-modelled instruments and acoustics, both audibly and visually accurate down to the spatial dispersion of sound and fingering of instruments, as illustrated in figure 2.9.

 Drawing from expertise in multiple fields, such as digital signal processing (DSP), graphics, acoustic modelling and sound synthesis, the team has studied and successfully combined technologies in all these areas, climaxing with an interactive performance at the SIGGRAPH'97 conference.

	
	2.5.2 the DIVA system

	
	The impressively endowed system architecture (figure 2.10 (a)) comprises of no less than 3 multi-processor SGI workstations, each acquiring a select number of competences, networked to external synthesizers and an Ascension Motion Star for conductor input.

 Figure 2.10 (b) is adapted from Huopaniemi et al [21] and illustrates the DIVA system information flow, with the corresponding scope of the MIVI system appended. It should be noted that our project will, in fact, address an even more confined scope than that indicated by the diagram, with our MIDI-to-movement mapper and Animation control avoiding the overhead involved with the processing of virtual biped musicians and multiple instruments. It is intended that the MIVI system should be suitable for execution on a traditional, self-contained, uni-processor system - a home computer or other such workstation.

 However, while sharing some common attributes, MIVI and DIVA differ in objective and target audiences. Thus, we find that, in a couple of our interest areas, such as fingering and visual detail, the DIVA research is less extensive.

	fig 2.10 (a) – DIVA

system architecture
	
[image: image9.png]

	fig 2.10 (b) – the DIVA
process flow
	
[image: image10.png]
 This stems from the fact that the DIVA system is principally orientated towards the use of sound engineers and experts – be that for movie sound or general recording studio work. MIVI, on the other hand, will focus on establishing itself in an educational role, aimed, initially, at the unskilled user, possibly in a studio environment, but more likely in the school or the home. The group's research, as such, illustrates an emphasis on acoustics and audio realism, with principal focus on sound spatialisation, room response modelling and HRTF (head-related transfer functions), rather than graphical and performance accuracy that, as discussed, will be crucial in our own venture.

 Many articles and papers, by different members of the group, provide overviews of the various aspects of the project, and it is, therefore, necessary to direct the reader towards Lokki et al [26] for one with more relevance to our field – the visualisation of musical instruments in real-time.

 Recalling our discussion of fingering algorithms in section 2.2.3, DIVA employs a simple and computationally efficient, yet slightly musically naïve, least-distancing algorithm to solve problems arising when there exists more than one way to finger a note. When presented with a choice of fingerings, this approach comprises of simply choosing the solution requiring the least hand or finger movement – favouring ease over quality. Such decisions are made using Critical Path Analysis (see [40]) – an extension to Sayegh’s [41] use of weighted, directed graphs (discussed in section 2.2.3).

 Although, as claimed, the fingerings are "realistic" [26] – in that they are possible – they are far from optimal and, although adequate in an entertainment environment, should be further scrutinised in an educational or reference role. This compromise is also evident in the conducting styles recognised by the system when it processes data from the input baton – only the most generic are identified. The implementation of both features is, nonetheless, more than adequate at demonstrating the practicality of their inclusion. The team’s fingering efforts do, however, introduce an interesting aspect of visual simulation – dynamic (or timed) fingering. Actions like guitar strums or percussion hits require preparation, such as the ‘up’ movement (mentioned in section 2.4.1) or the initial movement of the drumstick towards the drum skin.

 Lokki et al [26] also concede that more weight has been given to the realism of the ‘scene’, rather than that of the individual instruments and musicians themselves. This is most markedly illustrated by the ‘3D cartoon puppet’ format of the musicians. Sighting psychological reasons [26], the DIVA team conclude that maintaining a high animation frame rate and focusing on realistic character motions allow for a scene that the human brain can more easily accept as, or equate to, reality. The appearance of instruments and musicians has thus been optimised for efficiency rather than quality. Indeed, from the stills, it appears that the flute’s visualisation does not extend to the rendering of the flute’s keys.

 To further minimise the computational load at run-time, instead of computing the fingering and musician animation in real-time during playback, the motions are compiled for the entire performance pre-execution. It is not clear from the literature whether the DIVA system utilises an automatic inline system to compile the motions – such as that suggested by Lytle [27] – or a separate standalone application, to the same effect, or whether the animation files must be compiled by hand. If either of the latter two are the case, then MIVI has the great advantage of an immediately accessible repertoire of MIDI files, unrestrained by the pre-requisite of an accompanying animation file – in theory, every Standard Midi File. Furthermore, the real-time nature of MIVI allows for spontaneity in the music, like the introduction of musical improvisation.

 Like the animation files, the DIVA team store the data for instruments in external files [26]. In both cases, the system parses ASCII descriptions and must be generic enough to be able to process varied instruments (flutes, violins, drums, etc.). Such a ‘plug-in’ architecture of instruments and players to the DIVA Virtual Orchestra, allows for flexible system-extendibility. How the team achieved this, and the extent to which they did, is not clear from the available literature, but its description alone encourages consideration of similar functionality in our MIVI application (see Chapter 4).

 MIVI's focus on just the instrument should also permit us to dedicate considerably more of the available real-time computational power to this problem, as well as allow us to research more elegant and involved solutions in this area. Thus, for MIVI, the lines from the MIDI file and Instrument definition boxes to the MIDI-to-movement mapper, in figure 2.10 (b), should be emphasised in bold, indicating the real-time nature of this flow.

 Indeed, it would be interesting to see the fruits of the DIVA project updated for today’s hardware. The progress, particularly in 3D graphics hardware, during the last few years, has been pronounced. Excepting the distributed and multi-processor advantages of the DIVA hardware, the performance of high-end consumer systems, such as those used in the development of MIVI, could represent a comparable level of computational power. A combination of DIVA’s scene dynamics and MIVI’s attention to detail could lead to one of the most realistic real-time computer simulations yet.

	
	chapter 3 system architecture

	
	For all software applications, the right choice of destination platform and host system is paramount to the development of a program. From the outset of the project we have placed an emphasis on the universal compatibility and portability of MIVI. Although implementation will be limited to the Windows operating system, we will attempt to make any future porting of our efforts, to other OS’s, as painless as possible. In the next few pages, we will discuss the why, which and how of such future proofing measures. For a summary of the system architecture and dataflow, see figure 4.1 at the beginning of the next chapter.

 The choice of MIDI, itself, needs little justification – as a standard for musical IO, it is the only one implemented in most OS’s by default. Its presence, however, in the application programming interfaces (API’s) of Windows, MacOS, UNIX, Linux and many other systems, while assisting us, will not automatically make MIVI as platform independent. This is because MIDI dictates no single method of implementation – not only will the audio hardware differ from device to device, but so do the software interfaces to it: the kernel support and multimedia subsystems like, for example, Microsoft’s DirectX. Of course, MIVI is not the first application to seek compatibility across OS’s.

	the development

of music software

	 When technology first entered the musical sphere, its influence was limited to embedded systems. Composing, recording and mastering were all handled by dedicated music hardware and, indeed, many stages still lie under the purview of such devices today. However, as personal computers (PC’s) become more capable and user-friendly, the industry is gradually adopting them. A decade ago, this latter constraint gave Apple Macintosh the upper hand, and hardware and software manufacturers began to design for the MacOS platform.

 In recent years, the IBM-compatible PC’s success in the consumer market, due to its improved user-friendliness, flexibility and processing power, has convinced many of these manufacturers to include support for Microsoft’s Windows operating system as well. Even more recently, as the PC OS market becomes more competitive, versions of the industry-standard UNIX are demanding attention, featuring heightened accessibility and multimedia-provision, whilst still exploiting the same dependability and superior performance, as is seemingly the case with LINUX and BeOS.

 Established software developers are porting their audio editors, sequencers and other music utilities to these systems. One of these, Steinberg Cubase VST, merits our attention.

	3.1 the VST host system

	
	Starting out as a simple MIDI sequencer, Steinberg’s Cubase gradually acquired competences in audio recording, audio processing and music scoring. In its present form, it has the capability to host its own software synthesisers and software effects processors as plugins to the parent – or host – program.

	
	 This is the point at which Cubase acquired its VST suffix. Standing for Virtual Studio Technology [46], this initially involved the host application placing waveform data in a buffer and passing it to a user-specified child process – the effect plugin – that would modify (process) the data in the buffer and return execution to the host. As the host’s song plays, such information is streamed to the plugin and the buffer is outputted to hardware, post-modification.

 The widespread popularity and adoption of this architecture prompted improvements in the VST specification to allow these audio plugins to respond to, and process, MIDI input. Upon request, the host now places MIDI data in a buffer, which is passed to the plugin as well. The combination of these buffers allows for many different applications, as illustrated in figure 3.1.

 As is visible in the diagram, MIVI represents a departure from conventional plugin architecture and data flow. Indeed, the author can find no evidence of the VST system being previously used in this way – with no direct and immediate influence on the music being played back. Indeed, when we get on to coding, in the section 3.1.3, the reader will notice the proliferation of the word ‘effect’ in programming keywords, such as AudioEffectX and AEffect. Such keywords stem from the early days of VST plugins when the only possible applications were audio effects. Unfortunately, their continued, and sometimes counter-intuitive, use is required to maintain backwards compatibility.

	fig.3.1 - VST data flow

and applications
	
[image: image11.png]

	
	 Outside of the VST scope, such passive graphical applications have also been implemented in a plugin environment called WinAMP
, by NullSoft. Oriented for the entertainment arena, WinAMP processes musical input, using it to produce aesthetic graphical patterns, called ‘Visualizations’. Unfortunately, many of the problems that befall the MIDAS system (discussed in section 3.1.1), such as insufficient graphics, midi and developer support, are present in WinAMP and thus make it unsuitable in our project.

	platform

independence
	 By coding MIVI for execution through VST, we are delegating issues of MIDI IO compatibility, and other communication with hardware, to the host’s manufacturer. Furthermore, in addition to encouraging the involvement of third-party firms in plugin development, Steinberg decided to license the VST hosting technology for general use. Thus, a VST plugin is now not confined to the Cubase application, but executable in any VST host, like Steinberg’s Nuendo or Emagic’s Logic Audio applications. In all, VST hosts now allow for the execution of VST plugins in MacOS, OSX, Windows, Silicon Graphics (SGI/MOTIF) and BeOS operating systems.

	musical

representation
	 Furthermore, since MIVI’s graphics are synchronised with all the other events in VST, we can make use of the VST host’s native display formats. In Cubase, this most notably includes the musical score format, but also a drum score and piano roll (pianola) format. These views can be easily set-up to display in the background, so that, in one scenario, we can have the MIVI plugin display the physical configuration of the instrument while Cubase explicitly indicates the corresponding notes on the score, throughout playback. Thus, the user can attempt to play the music from the score, only resorting to MIVI when they reach an impasse. Outside of playback, the user can employ Cubase’s sounding tool to click notes in the stave itself. Ordinarily this would send the note to a synthesizer device for auralisation, but in MIVI’s case, the user will be shown how to play the note, as it relates to the real instrument instead.

	accessibility
	 Although commercial concerns are largely irrelevant at this early stage, one consequence of this decision is worth mentioning. Music software, such as Cubase, is often targeted, by way of features and pricing, at the professional market. This may beg questions about the logic of designing an educational utility for a post-education audience and the morality of restricting use to only the affluent minority of society – a contradiction to the intended audience that we identified in section 1.2.

 In response, it should be noted that, while VST hosts, designed and priced for the home market – including a ‘lite’ version of Cubase (called Cubasis) – do exist, MIVI is also envisioned in a classroom environment. Already, many music departments have invested in music workstations, including a copy of such software – often the professional versions. These are viewed as sufficient and necessary justifications for the choice but, if for some reason the availability were not enough, a dedicated, yet simple, VST host could be constructed to allow the plugin to be universally executable. However, any such host would lack the advantages of the score format, unless explicitly provided.

	
	3.1.1 alternative platforms

	
	For many software projects, the natural choice is to start from scratch, coding the program as an independent (standalone) application. If a hosted environment, such as VST, is available, programmers, often with reason, cite problems regarding the opaqueness of operations – the inability to see and control what is happening behind the scenes – and thus choose not to use these platforms, despite the advantages and shortcuts they might offer, so as to engender complete faith in their implementation.

 For two reasons, we conclude that VST, while omitting our need to code for low-level hardware communication and providing us with added functionality (such as the score and interface), also satisfies these more stringent requirements.

 Firstly, both VST and Cubase are benchmarks of professional standards in music technology. In the studio environment, for which both VST and its plugins are designed, it is necessary to have meticulous timing – the host functions, and is written, in much the same way as a Real-Time or Safety-Critical System [6], requiring the same compliance from hosted plugins.

 Secondly, without discouraging or hindering development of such software, Steinberg regulates the access and existence of developer resources. All developers must register with Steinberg, before receiving the Software Development Kit (SDK), which contains the official documentation to the VST system [46]. This, combined with the Steinberg-run and -moderated Mailing List, form the only practicable resources for VST programmers. In so doing, Steinberg minimises the potential for misinformation, inherent in distance learning, while providing an unbounded source of information.

 Another system in development, here at the University of York, called MIDAS
, shares a similar rationale to MIVI – the visualisation of audio. MIDAS is a programming language for the visualisation of music and, in this capacity, represents an implicit specification for applications to that end.

 Although literature is scarce on the subject (due to its infancy), several themes of the research compliment our own. Firstly, MIDAS harnesses the power of OpenGL 3D graphics – although only a select amount of OpenGL operations are currently promoted as keywords in the MIDAS language. Secondly, MIDAS is designed to be platform independent and, similar to many of the technologies employed in MIVI, should compile on any platform with a C compiler.

 Unfortunately, several aspects of the MIDAS system make it unsuitable as a host for our project. As yet, no MIDI support has been stated or documented – the language is designed to react to waveform audio only. Furthermore, in this capacity, the graphics facilities available are designed to enable programmers to produce highly abstract, algorithmic graphical patterns, as opposed to virtual objects. Lastly, as with standalone applications (discussed earlier), MIDAS has no default support for the score or other musical notations.

 When it reaches maturity, and with the addition of MIDI to the feature set, MIDAS could represent an attractive option as a foundation for projects like MIVI. Although the lack of existing literature makes a review of the technology difficult, at this stage, Dr. Hunt – the project’s leader – brings his experience and knowledge to bear on this endeavour more directly in section 6.1.1.

	
	3.1.2 programming language

	
	By selecting the VST plugin architecture, we have pre-determined the programming language for our application – C
. As universal as the other standards employed in our project, C has been an industry-standard high-level programming language for many years now. Hence, many argue that it has begun to show signs of age and, for that reason, we take the liberty, in our Windows implementation, of programming in C++ – an enhancement introducing, among other improvements, an object-oriented programming (OOP) environment. In addition to adding efficiency to our code, OOP will also present the reader with a much clearer picture of what is going on in MIVI.

	
	3.1.3 initialising the VST architecture

	
	In Windows, VST plugins take the form of Dynamic Link Libraries (DLL’s). A DLL is a library of code, comprising functions and subroutines, accessible to any program which ‘links’ to the .dll file. Upon start-up, a VST host checks a specified directory for such files, extracting a plain word title for the plugin and presenting it as such within the parent application. Execution of the code contained within the DLL is then suspended until the user activates the plugin within the host.

	plugin creation
	 When such an event occurs, the code at the DLL’s entry point (its *main function – code ref. 15) checks that the parent is capable of hosting our plugin and that sufficient memory is available, then creates a new plugin object, effect. If all is successful the function returns, to the host, a pointer to the new instance of the plugin. Otherwise, an exception is raised, in the form of a null return, whereupon the host reports the problem to the user.

 In creating the plugin object, the object’s constructor (code ref. 18) is called. A constructor, as the name suggests, consists of code to initialise the object, instantiate class variables and handle any calling arguments. In the VST environment, we must tell the host about the competences of the plugin, such as its audio IO capabilities. From the information we provide, the host can work out which resources the plugin requires, and thus save time by omitting unneeded callbacks and data flow.

 For MIVI, we set the number of audio inputs and outputs to 0 and let the host know that we want to appear as a VST Instrument (a synth) as opposed to a VST Effect, thus saving the host from having to supply audio data during playback. It will also allow the user to intuitively select MIVI as a MIDI output device in the host application.

	issues with the

MIVI output device
	 It is worth noting that, by simply switching the track’s output to MIVI, the track will not be auralised through a normal audio device, and will be effectively muted instead. As yet, it is not possible for the host to send notes to MIVI, then for MIVI to pass them directly to a particular MIDI device. The SendVstEventsToHost function allows the plugin to send MIDI messages back to the host, but they will be treated as standard input and sent to the output of the presently selected track, which only serves to complicate matters.

 So, to maintain the audio output, it is necessary to split the track’s output in two, from within the host, and divert one to MIVI and the other to the desired hardware device. Of course, another, less tidy, approach is to simply copy the original track and select MIVI for output on the copied track.

 Alternatively, we can use this deficiency to our advantage. By muting the track and sending it to be displayed through MIVI, we are not muting other parts of the music and are allowing the user to superimpose their own input. A range of learning tools called Music Minus One
 already employs this concept. Consisting of the score for a concerto, or other such piece, and an Audio-CD of the music without the solo instrument, the idea of the Music Minus One pack is to provide the consumer with a backing to their solo performance. This has the great advantage that the aspirant soloist can practise with a full orchestra in the privacy of their own room. A similar process also underpins Karaoke.

 Other lower priority capabilities are requisitioned when the plugin’s initialisation is complete through the plugins obligatory canDo function (code ref. 21). The host calls this function for each capability and it is up to the plugin to return true (1) for those it supports. In the case of MIVI, we state support for receiving events – in particular, MIDI events – and timing information (including playback status). The host, therefore, now knows to provide such data.

 Non-essential properties, such as vendor information and copyrights, are also solicited in a similar away, but in MIVI, have been largely ignored.

 One chore, of note, is the unique identification of MIVI to the host. To ensure that two plugins do not conflict when used together, a plugin supplies the host a four digit alpha-numeric key to identify them (code ref. 22). To prevent plugins using the same key, the developer must register their key with Steinberg before use in the public sector. Since MIVI will not be used in a commercial environment and since all the keys of plugins, available to run in tandem with MIVI, are known to be distinct, the “MIVI” ID, that we shall use, need not be registered with Steinberg.

 At runtime, VST will not activate the plugin by default – the user must activate it manually. This involves opening the VST Instruments window (because we have defined MIVI as a synth, rather than an effect) and selecting ‘MIVI’ from the list of available plugins. Then, by toggling the ‘power’ button on the VST Instruments console, we make MIVI available, as an output device, to the open MIDI sequence. Now, the user only has to go to the track they wish to have displayed and select ‘MIVI’ as the output device, thus diverting all the MIDI messages to the MIVI plugin.

	3.2 the graphics environment

	
	In the introduction, we mentioned our selection of graphics platform – OpenGL. OpenGL has been chosen, not only for its graphical capabilities and suitability to our application, but for its cross-platform portability and programming language independence. As detailed in Appendix B, OpenGL is essentially permissible in any C-based programming environment and, as such, represents an ideal choice in trying to maintain platform independence.

 The reader is referred to the introduction to OpenGL in Appendix B for explanations of concepts and terminology, used extensively in this section.

	
	3.2.1 integrating VST and OpenGL

	
	As required by other external dependencies, like the VST host and architecture, our employment of the OpenGL graphics environment requires us to initialise variables, devices and windows, and declare support for event callbacks, like display, keyboard and input handlers, before we can effectively start building the 3D objects themselves.

	uniting the VST and
OpenGL environments
	 To streamline the design process, we shall employ the functions of the GLUT utility toolkit library, as discussed in Appendix B. However, the most common use for OpenGL and GLUT are in standalone dedicated graphics applications, and it will be necessary to modify the GLUT library to make it compatible with the VST host environment.

 Primarily, we want to give priority to the VST host system, so that music playback is not impaired due to costly graphic operations. In a normal GLUT graphics application, the environment is initialised and pointers to procedures that will handle the creation of 3D objects and the effects of keyboard input are passed to GLUT. Following this step, control of the application’s execution thread is transferred to GLUT, using glutMainLoop(). In the GLUT library, this procedure consists of an infinite loop, which, at each iteration, checks to see if the execution of the code to update the on-screen graphics is required (requested when the program calls glutPostRedisplay()) and checks the operating system’s message queues for pending input, executing the appropriate user-defined input-handling function. This repeats until the application, and hence loop, is aggressively terminated either by the user, through the OS, or by the program itself, through the calling of glDestroyWindow(), during one of the user-defined callback functions.

 Unfortunately, if we were to simply use this method in our VST plugin, upon activation, control would be transferred to GLUT, from which it would not return. In practice, since many of Cubase’s operations are driven by interrupts, issued by the OS, some functionality endures – for example, services reliant on high-priority interrupts, such as that of the real time clock (RTC) – which regulates playback – and the keyboard. However, features of equal importance, riding on lower-priority interrupts, are blocked, including mouse events. We therefore need to modify the GLUT library’s source code to accommodate our situation.

	distribution
of glut32.dll

	 Such addenda will alter the behaviour of the library. Not only does this mean that the modified glut32.dll file must be distributed with MIVI for it to function properly, but that the file must not conflict with other versions already in existence on the destination system. To overwrite an existing file, with one that performs differently, will result in abnormal and unpredictable behaviour in other applications that rely on the original, un-doctored code. Thus, to be safe, we should make the new library backwards compatible with the old. Note, however, that this will not solve problems presented if the library with our modifications is subsequently overwritten with a newer version of the standard GLUT library without them.

	platform
dependence
	 It should also be noted, that the modifications we are about to make to GLUT, will largely be to the Microsoft Windows 32-bit (Win32) code and, therefore, will not overcome similar problems faced on other GLUT or VST host platforms. Such extensions to the modifications are left the concern of future research, desiring to port MIVI to these platforms.

	modifying GLUT -
maintaining control
	 To solve the problem mentioned earlier, MIVI must retain principal control of the execution thread in the VST environment. This involves digging into the GLUT source code and finding some way to avoid the infinite loop, in the file glut_event.c, so that calling glutMainLoop() will draw the screen, check the message queues, calling any appropriate callback functions, and then return. It would then be up to our plugin to call this function regularly enough to produce efficient and continuously updated OpenGL graphics.

void glutMainLoop(void) {

 -- safe guards

 for() {

 if(update_requested)

 redraw(graphics);

 if(input_received)

 call input_handler_func;

 }

}

void glutMainLoop(void) {

 -- safe guards

 for(){

 glutMainLoopUpdate();

 }

}

void glutMainLoopUpdate(void) {

 if(update_requested)

 redraw(graphics);

 if(input_received)

 call input_handler_func;

}

fig. 3.2 (a) – Original GLUT code

fig. 3.2 (b) – Modified GLUT code

 For us, commenting out the for loop statement would be sufficient, but to maintain backward compatibility, we move the body of the loop to a new function, glutMainLoopUpdate(), and also provide a call to this new function in the original loop, as illustrated in figure 3.2 (a) and (b). Now, other applications can continue to call glutMainLoop(), and receive the same functionality. We, on the other hand, can place a direct call to glutMainLoopUpdate() in the MIVIEditor::idle() function (code ref. 23). This idle function is called by the VST host, whenever both MIVI’s Edit Window is open (and, thus, as will our OpenGL window), and the host is unengaged in other, more critical, activities. In practice, this proves to be quite regular and frequent, and is more than adequate for our purposes.

 It is worth noting that the idle() function can be called before the OpenGL window is fully initialised which leads to problems when certain OpenGL functions are called. Thus, following successful initialisation of the OpenGL environment (code ref. 26), we set a Boolean flag, GL_ACTIVE, to true. In idle() and at other appropriate points in our program, we use this flag to guard against premature calls to such functions.

	modifying GLUT -
prioritising VST authority
	 GLUT’s conventional standalone nature means that it is also not designed to create an OpenGL graphics window as a sub-window of another non-OpenGL application. On the other hand, GLUT is perfectly au fait with creating OpenGL windows subordinate to a parent OpenGL window. In this instance, the program need only call glutCreateSubWindow() and supply an integer, identifying the parent window, as returned by the original call to glutCreateWindow() to create the OpenGL parent itself. Deeper into the library, these two functions simply call a generic window creation function, __glutCreateWindow(), which optionally takes the integer, identifying the parent, as a parameter. If non-zero, the function extracts this parent’s window context handle (HWND) and assigns the new child window to it.

 Thus, it is a fairly simple process to modify the existing code to allow us to simply provide the HWND handle of the VST host application’s window (given as the *ptr pointer in the MIVIEditor::open() procedure – code ref. 24) for use as the parent. The code is this time located in the GLUT source code file glut_win.c. Once again, we should be wary about directly editing the code. We would need to change the calling arguments of procedures glutCreateSubWindow() and __glutCreateWindow(), so that they can take an HWND instead of an int, but doing so will interfere with the inner workings of the library.

 Instead, we create a new function, glutCreateMiviWindow(), which will mimic the actions of the original two GLUT procedures, using the HWND directly in the Microsoft Foundation Classes (MFC) call to create the window, as illustrated in figure 3.3 (a) and (b). Note, however, that we yet retain the functionality of the glWindow integer window identifier, so that we can pass it to the original glDestroyWindow() function at closing.

int __glutCreateWindow(int parent)

{

 -- initialise window style

 MFC_Window(get_HWND(parent), …);

 return (int)new_window;

}

int glutCreateSubWindow(int parent)

{

 int child;

 child=__glutCreateWindow(parent);

 return child;

}

int glutCreateMiviWindow(HWND app)

{

 -- initialise window style

 MFC_Window(app, …);

 return (int)new_window;

}

fig. 3.3 (a) – Original GLUT code

fig. 3.3 (b) – Appended GLUT code

	preventing harmful

OpenGL destruction
	 Another modification to the original procedure is warranted, as we want the window to omit the close button, which allows the independent destruction of the OpenGL window. Were the window to be arbitrarily destroyed, havoc would follow when MIVI, ignorant of its destruction
, next tried to execute an OpenGL command.

 Ideally, we want this control to rest with the plugin itself, to unite the construction and destruction of OpenGL and the plugin editor. So, we simply withdraw the close button from the window’s title bar, by changing the window style mode, defined in glutCreateMiviWindow(), from WS_POPUPWINDOW (which is a combination of the flags, WS_POPUP, WS_BORDER and WS_SYSMENU) to just WS_CAPTION (which gives us a title bar), WS_EX_TOPMOST (which prevents the window from being hidden), WS_THICKFRAME (to allow manual resizing of the window) and WS_POPUP (to make our window a popup window). Now, we have a window, which the user can position and size to their liking, so that it is not too intrusive with regard to other screen real estate, yet, at the same time, cannot be obscured. Conversely, the further addition of the WS_MAXIMIZEBOX style allows the user to make MIVI the centre of attention, covering the entire desktop, if desired. At the same time, the omission of WS_SYSMENU prevents the appearance of the close control.

	containing the impact
of GLUT modifications
	 Instead of concentrating on backwards compatibility, we could take advantage of the OS’s path-searching behaviour. If MIVI demands the existence of glut32.dll, we can prevent it from using the system’s generic version by placing a copy of our own in the VST host’s home directory, which the system will check before widening its search. Since MIVI is the only known OpenGL-wielding VST code to date, possible version conflicts will be minimised, thus devaluing any attempts to maintain GLUT compatibility with other applications. However, this approach, (1) relies on the absence of other versions of GLUT in the host’s directory, (2) requires a copy of our library in the directories of every VST host on the system, and (3) relies on a particular path-searching behaviour, that could vary between OS’s. Hence, we favour our original approach.

	manual inheritance
of GLUT functionality
	 However, given that the original GLUT window-creation functions are now depreciated in the eyes of MIVI, another approach emerges. As mentioned, GLUT is essentially a macro library of individual GL procedure calls. Simply moving the necessary GLUT macros inline with MIVI’s dynamic link library, mivi.dll, will omit the need to package the GLUT library altogether, while ensuring that all the modifications and functionality are still available. Unfortunately, realising this is somewhat more involved than simply copying the desired procedure code into MIVI (requiring the identification and duplication of dependent GLUT private functions, like __glutCreateWindow()) and this is, therefore, a step we leave to future work. The percentage of GLUT which MIVI employs, is not immediately apparent from just counting the number of distinct procedures called in the MIVI code, and such further study might even show that the amount of code that it would be necessary to migrate would cast doubt over the net advantage and overall practicality of such a move.

	performance

considerations
	 The performance bottleneck of our system will be the frequency of idle() calls (code ref. 23) from the VST host. This can be observed by placing MIVI in SPIN_MODE, (where the model is simply rotated on all axes by a small amount each call) then clicking and holding down a button on the plugin’s interface toolbar. In doing so, focus is temporarily usurped by the plugin and rendering performance is dramatically increased. The only net effect, however, is on the frame rate – the frequency of scene refresh. The actual time available for scene rendering, per idle() call, is still enough, in normal operation, for complex scenes and graphics operations.

 Furthermore, when a plugin requests MIDI data, the VST host is obliged to provide it with calls frequent enough to enable its real-time processing, and thus, in combination with double buffering (described in section 4.1.3), we are assured of acceptable scene fluidity.

 The relative scarcity of idle calls is mainly due to the number of operations the VST host must itself perform, before idle time is available. Regardless of the absence of noticeable performance increases, cheaper and more efficient approaches have been employed, where available, in order to prevent extra loads on the host and improve performance if, at some stage, it can bestow more processing time on the plugin. Sometimes, though, when a lot of the host’s work is involved with digital signal processing (DSP), as is often the case with modern audio sequencers, this frequency will become too sporadic. However, this problem concerns all VST plugins, and is only effectively addressable in the host.

 Some plugins are known to compound the problem. Although there is a large movement, in the music industry, from hardware to software, processor-intensive programs, such as DSP, nearly always execute slower, resulting in longer latencies between input and output. Because the two methods are often used together, the performance advantages of hardware are usually compromised when the VST host is obliged to delay its response in order to synchronise outputs with software components. The net result is that there is a delay of up to several milliseconds before audio events are heard.

 For our application, it is vital to maintain synchronisation with graphics, such as highlighted notes on the score, which are not similarly delayed. Therefore, such delays must be annulled, thus forbidding MIVI’s co-existence with such resource hungry DSP effect plugins. Intuitively, the simplest and most practical solution would be to disable audio processing in the host. This might also remove a small overhead in the system and improve overall performance. However, this seems to have the effect of disabling the entire VST plugin architecture as well. Instead, we leave the audio enabled and merely edit the imposed delay manually, by reducing the host’s System Preroll from 500 to 0. In actuality, most people’s hearing is not sensitive enough to require a zero delay, and a slightly higher setting might allow resource-efficient plugins to execute within time without noticeably compromising the synchronisation. It should be noted, however, that DSP plugins are of principal use in composition environments, not everyday MIDI-file playback.

	other known issues
	 One further deficiency in the usage of OpenGL with VST is worth mentioning. When the user closes the plugin, the host promptly ceases execution of any thread in the plugin. In most circumstances, this takes place without complaint. However, on the rare occasion when the plugin is caught making an external call to a GLUT library procedure, notably glutMainLoopUpdate(), such abrupt execution produces errors. Usually, the result is merely an error message from the host but, from time to time, it becomes necessary to restart the host following this error, before the plugin can itself be restarted. This could present another advantage of bringing the GLUT functions in house, where their calls could be more closely guarded. However, these functions proceed to call the core GL library’s procedures, and it remains to be seen if the problem wouldn’t simply propagate to the next layer of abstraction.

	
	3.2.2 initialising OpenGL

	
	The remaining tasks involved with setting up the OpenGL environment (code ref. 26) largely follow convention. Using glutInitDisplayMode(), we erect a display mode which uses double-buffering, red-green-blue (RGB) colour channels and z-buffering.

	
	 Double-buffering simply allows the next frame’s graphics to be drawn in a second buffer, while the contents of the first buffer are displayed, thus minimising (often halving) the time taken to render each frame. To take advantage of this, all we have to do is tell GLUT that we support double-buffering (GL_DOUBLE) and call glutSwapBuffers() after each frame is ready for display.

 Colours for computer screens use an RGB palette, with each colour defined by respective amounts of red, green and blue. These components are then mixed in a similar way to light rays of corresponding wavelengths. OpenGL actually supports an extra dimension of ‘colour’ – the alpha channel (GL_RGBA) – corresponding to degrees of transparency. When combined with alpha-blending (GL_ALPHA), it simply blends a foreground object’s colour with that of the object(s) behind it, to an extent defined in the program. As we will soon see, such operations are, unfortunately, not available to us in our current implementation.

 Z-buffering refers to the third axis in Cartesian co-ordinates – that of depth. Previously, 3D scenes containing multiple objects had to be rendered from the back to the front. Otherwise, distant objects would appear on top of closer ones, contrary to reality. Were the object to be rotated 180° around the vertical, what was previously must be rendered in reverse order. The intervening angles additionally present even more of an ordering challenge.

 By employing a z-buffer, the depth of each object is stored (ie. buffered) in memory, so that we can request the frequent calling of GL_DEPTH_TEST, which will automatically work out the correct rendering order to maintain consistency. Unfortunately, this OpenGL function prohibits us from using elaborate quality improvements such as anti-aliasing.

 Aliasing is the resulting artefact produced when a diagonal line is drawn on a bitmapped display – the line will appear jagged because of the square nature of the pixels. Anti-aliasing [3] uses alpha-channel blending to smooth these harsh edges with the background, presenting the appearance of a finer line. Such features are unavailable to us due to the order of OpenGL’s rendering pipeline, resulting in conflicts between the GL_DEPTH_TEST and GL_BLEND operations.

	improvements
offered by alpha
blending and sorting
	 Were we to have more time, it would be possible to modify our code to implement our own dynamic depth-sorting function, which would nullify the need for GL_DEPTH_TEST and enable the use of GL_BLEND. This can be achieved by storing 3D objects in our own buffer, which we manually re-sort, using an efficient sort algorithm such as QuickSort when the scene changes, before sending them to OpenGL – a process known as alpha-sorting. As one might expect, the lack of blending capabilities also prevents other uses of partial transparencies.

 Lighting is set up at initialisation, in the function glInit() (code ref. 28). It is static, in that it will not change or move for the entire runtime, and assumes the default lighting parameters of the OpenGL library, whereby a single light shines from a source just above the viewport. In this procedure, we also set the background colour and tell OpenGL to favour an increase in the quality of perspective calculations, even at a slight cost to performance
, using glHint().

	the OpenGL
display function
	 We declare the glDisplay() function (code ref. 29) as the main OpenGL scene drawing procedure. We have informed GLUT (code ref. 26) that, when we post that an update is necessary, this function will generate the new scene. At the procedure’s entry, the scene is void and, at return, should be completely spawned. Since the majority of our scene centres around the drawing of an instrument, most of the work is done by the draw() function of the active instrument, which we will discuss later.

	orientation and other
global display settings
	 Instead, more global functions, such as the ‘camera’ rotation and zoom, are handled in the glDisplay() procedure. The parameters for such operations are stored in global variables, which can be set or modified anywhere in the MIVI scope.

 Because of OpenGL’s relative vector-based architecture (see Appendix B), implementing zoom is almost as simple as a single translation backwards. However, to maintain an efficient scene, OpenGL requires programs to specify a viewing range. Setting up the viewing matrix through gluPerspective(), requires you to specify the field of view (FoV), the pixel aspect ratio and both a near and far clipping distance. Objects (1) outside the FoV, (2) before the near clipping-distance or (3) beyond the far clipping-distance are, thus, simply not rendered. We must make sure that the translation to account for zoom does not place the ensuing instrument beyond the far clip distance. Thus, we use the zoom variable in setting this limit.

 Finally, immediately before the instrument’s draw() function is called, three calls to glRotatef() implement the instrument’s rotation in the z, y and x planes, respectively. Each rotation will effect the current viewing matrix, thereby impacting on future rotations and, thus, the order of these rotations is important. The z-axis is only modified during SPIN_MODE, which, when active, simply increments the rotation around all 3 dimensions during the idle() call. This axis will therefore tend to have less influence on the other two than they have on it, and is thus executed first. The remaining ordering of the x and y rotations is such as it is to present the most intuitive response to the user’s manual control of these parameters through the interface (see section 5.3).

	
	chapter 4 instrument models

	
	The environment established in chapter 3 was created for the purpose of drawing musical instruments in 3D. Figure 4.1 shows the system in its entirety. It encapsulates the system architecture, the data flow and processes. Inherent in the diagram are: MIVI’s unique IO configuration (see section 3.1), MIVI’s relationship with OpenGL (see section 3.2.1), MIVI’s execution model, including the asynchronous communication between processing threads (see section 5.1), and the processing done by the instrument models, which we discuss in this chapter.

	fig.4.1 - system

structure and data flow
	
[image: image12.png]

	
	 Following the example set by the DIVA project (section 2.5) and further developed throughout chapter 2, it makes sense to exploit the similarities of instruments within MIVI. In this chapter, we describe how these commonalities are abstracted into hierarchical data structures and implemented in the MIVI code. We then continue to a lower level of abstraction and discuss how optimisations were made in the creation of the instruments graphics models, before discussing the implementation of a generic instrument class and both piano and flute subclasses.

	4.1 hierarchical instrument definitions

	
	In MIVI, we can capitalise on the similarities within instrument groups, as implicitly inherent in Yamaha XG and SONDIUS XG, when generating the instruments in 3D, by employing a hierarchical instrument definition.

 In our example of the string family, from section 2.2.3, many of its members can be defined using only a few parameters to dictate measurements and proportions, given a generic string instrument shape. This abstraction process is nothing new, and is similar to that conducted in the GLUT library of OpenGL (see Appendix B), where macros of lower level commands are used to create common primitives (cubes, sphere, etc.), given minimal parametised information.

	
	 As with the audible effects on sounds in physical modelling, the drivers for strings, themselves, remain almost visually unchanged from violin to viola to cello – for the bow, only the length changes, and for the hand (when plucking), no alteration is necessary. Thus to define a 3D bow and 3D hand for each string instrument, vertex-by-vertex, is exceedingly wasteful, and the introduction of a bow and hand sub-class, accessible to all members of a string instrument class makes for a more efficient approach. The hand sub-class will even lend itself to many other families and might benefit from an even greater – possibly global – scope. Other drivers prove equally as generic, as in the realm of percussion, where a drumstick class would come into play.

	
	4.1.1 graphical hierarchies

	
	For instruments other than strings, the problem of abstracting similarities is yet more complicated. In the woodwind family, for example, clarinets, oboes and flutes have highly complex key layouts and configurations - each varying from one instrument to the next. It is no longer a case of just stretching a generic shape to attain the other members of the family.

	abstracting instrument
components
	 We must, instead, take our abstraction to a lower level and observe that although the layouts of each instrument vary, the styles and shapes of individual keys are repeated throughout the designs of the entire family, most appearing more than once in a single instrument. So, in the same way a GUI (graphical user interface) toolbar is an array of buttons, of varying styles (push button, on/off, icon, text, etc.), a MIVI wind instrument could be an array of instrument keys, with properties defining the various wind instrument key types (crook key, side key, trill key, closed key, etc.). Once the mechanism has been defined, it must simply be anchored to a separately defined instrument body. Unfortunately, the variety of wind instrument bodies makes factoring similarities at this level more difficult and, for now, it seems best to define them in the conventional vertex-by-vertex tradition.

 Besides efficiency, a further advantage of the abstraction approach will be the easy incorporation of degrees of freedom into the system. In the final animation of the instrument, it will be necessary for each key on the instrument to be independently moveable, as they would be on a real instrument. Thus, the computer is able to demonstrate how to play the instrument.

 The stack architecture of OpenGL, which enables such hierarchical modelling (see Appendix B), similarly allows us to implement causal key movements with minimal effort – where the position of one key affects the position of others, as is sometimes the case with wind instruments (eg. the D and D# keys on a flute).

 Similar approaches to those used in the woodwind section could be applied to brass. In this case, however, the fingering architecture (ie. the valves) is significantly simpler – sometimes nonexistent – and it is the pipe configuration that demands the attention. We shall not go into much detail here, but solutions could lie within the employment of interpolated curves, such as bezier or NURBS curves [3], which function like rubber hoses, with points along the curve strategically anchored at certain locations of the instrument, forcing familiar brass pipe shapes.

 Such a process, in effect, would mimic the actual method of brass instrument construction in the real world. Indeed, were the reader to also review texts on the manufacturing of most instruments [5]

 REF _Ref3632060 \r \h
[39], they would notice further adaptations of non-virtual construction techniques in the respective earlier discussions.

	
	

	4.2 the ‘MIVIInstrument’ class

	
	An instrument in the context of MIVI is far more than a simple 3D object. Aside from the aesthetical appearance, a MIVI instrument, just like a real instrument, must be able to respond to input dictated by music. Similarly, both have names, orchestral families and other properties implicitly associated with them. For these reasons, and those discussed in chapter 2, the introduction of a generic instrument class, MIVIInstrument (code ref. 07) will facilitate our design process. Extended instantiations of this class will form the various different instruments of our system, as visible from the front-end.

 A generic class contains operations and variables common to all its intended children; in this case the classes, miviPIANO (code ref. 08) and miviFLUTE (code ref. 09). The corresponding code is simply inherited from the parent and, thus, it is not necessary to write and rewrite it in each child class.

	switching instruments
	 Although no more than one instrument will be used in MIVI at one time, we wish to allow the user to change the active instrument at will, without having to restart the program. Again, we do not want to have to rewrite every feature
of the core MIVI system for each different instrument, with calls like
piano->draw() and flute->draw().

 The parent’s declaration (code ref. 07), although never instantiated and used directly in MIVI, acts as a specification for any given child class. If we initialise a pointer, *instrument, to an object of type MIVIInstrument, we can use this as a generic interface to any of its sub-types. All we have to do is direct the pointer to an object in memory of the appropriate sub-type, which encapsulates the desired instrument (code ref. 19). When a specific component of the MIVIInstrument pointer is called or queried, the directive is imparted to the active child sub-type, in our case miviPIANO or miviFLUTE. So, in our example, all that is now required is a single call to instrument->draw().

	initialising
the instrument
	 A common operation in this kind of object-orientated programming is one to initialise any instantiations of the object, setting components to default values, etc. In a normal class, this can be done in the constructor – in our case MIVIInstrument::MIVIInstrument(), which is called upon declaration. However, since the parent’s constructor will never be called, we create a dedicated initialisation procedure, init(), which can be executed from the active child’s constructor. Variables, range, octave and pitch, which govern the dynamic range of an instrument are assigned their default values here, following declaration in the class’ own declaration. Also, because this process is trivially short and simple, we take the liberty of defining the procedure’s body within the class’ declaration.

 These variables will allow us to marry the various keys and pitches of the instrument with a specified range in the global notes array – thus enabling MIDI-driven manipulation of the instrument. The first, range, simply tells us how many different pitches are in the range of the instrument. The second, octave, tells us the lowest octave the instrument is playable in. Finally, pitch aptly tells us the pitch in the aforementioned octave, from where the range begins. It is then assumed that the range is composed of pitches a semi-tone in separation, starting from the offset given by the latter two parameters and proceeding for range number of notes.

	extending the
default instrument
	 Most instruments share these three characteristics, but for many, there will be extra properties unique to only that instrument – properties that will need to be available throughout the entire scope of the instrument’s class.

 For example, because the size of the piano’s body is dependent upon the size of the keyboard itself (which, in turn, varies depending on the number of keys), it is necessary to know the dimensions of the keyboard, before the body is drawn. Thus, at initialisation of our miviPIANO class, we deduce and set a global class variable keyboardWidth with the necessary information.

 Likewise, in the miviFLUTE class, it is necessary to have a variable indicating the current choice in fingering and, furthermore, to have flute-specific user-defined data types to support the construction and manipulation of the instrument.

 In each case, these variables and types must be set up in addition to the default trinity and are, thus, set up in the child’s own initialisation procedure. This time, however, we can move the code into the child’s constructor (code ref. 34 and 40, respectively), so that a new instrument can be created in a single – theoretically atomic – line of code. Note, we still retain the functionality of the parent’s procedure using an explicit call to MIVIInstrument::init(), re-queuing the call and its arguments on the parent.

 Inheritance and extension, not only applies to variables, but to operations too. Although every instrument must have some kind of draw() function, in order to produce the 3D model, each instrument may do this in a different fashion. Hence, although the draw() function is declared with null body in MIVIInstrument (to make it universally accessible to MIVI) and overridden in the child classes, extra abstraction may produce supplementary functions to aid drawing, such as drawKeyboard() or drawTube(), which are declared in only the child’s class declaration and called from the its draw() function.

	
	4.2.1 integrating instruments into VST

	
	In VST, each plugin consists of a collection of ‘programs’, the concept of which is best illustrated by example. In the case of a Reverb (Reverberation) effect plugin, the programs would constitute effect presets, such as ‘Concert Hall’, ‘Canyon’, ‘White Plate’, etc. In MIVI, we could adapt this architectural feature and employ it to allow the switching of instruments, with our presets being ‘Piano’, ‘Flute’, Violin’, etc. In our implementation, we take this to a lower level and even specify the type of piano (categorised by the number of keys).

 In the typical VST plugin, this ‘program’ object has its own class, but in ours, we can absorb it as part of MIVIInstrument (code ref. 07), which we amend to be equivalent in the eyes of VST. Herein lies the raison d’etre for the name string (or character array).

 Upon initialisation, the host calls a plugin procedure getProgramName(), which must return the name of the active plugin. Using the second argument of the AudioEffectX constructor, identified and called as a parent plugin class in the plugin’s constructor, MIVI::MIVI() (code ref. 18), it cycles through n number of different programs – in our case, 5. Each is initialised, through setProgram() (code ref. 19), in order to extract its name, so that the host can present it to the user in a drop-down list, or other such form. Thus, by importing the name variable into our MIVIInstrument class and instantiating it inside the instrument’s constructor, we can emulate the ‘program’ functionality without the need for a dedicated ‘program’ class.

 Incidentally, the inefficiency of this data collection method has
been acknowledged by Steinberg, and a new plugin procedure, getProgramNameIndexed(), effects the provision of the names through more explicit means, such as a dedicated global array of names indexed by program number. This, however, is only supported in the newest of hosts and has, therefore, not been implemented here.

	marrying instruments
to General MIDI
	 Along a similar line, the MIVIInstrument class also identifies any equivalent General MIDI voice number that the instrument might correspond to. The resulting variable, defaultGMvoice, is also set in the relevant constructor of the child instrument class. By doing this, instrument models could be selected using the simple 7-bit integer GM number. Thus, when the user changes the voice number of the track in the host, the ensuing Program Change MIDI message can be caught by processEvents() (discussed in section 5.1) and used to automatically switch to the appropriate instrument. However, the relatively confined variety of instruments, in our implementation, reduces the practicality of such a feature, at this early stage.

	
	

	4.3 the ‘miviPIANO’ subclass

	fig. 4.2 - the miviPIANO instrument model
	
[image: image13.png]

	
	The keyboard nature of the piano – and, hence, close conformity with the MIDI specification – makes it a good starting point for computerisation. The predictability and simplicity of the piano will allow us to test the system architecture. Furthermore, research in the field of music education [19]

 REF _Ref3632518 \r \h
[35] suggests that, after acclimatisation with the score, learning the piano is an advisable step before any other instrument. The end product is illustrated in Figure 4.2.

 As with the SONDIUS XG system, mentioned in the section 2.2.3, the appearance of the piano is a combination of driver and resonant body – keyboard and piano body, respectively. From a purely aesthetic point of view, these two components of the piano have little to do with one another and can be considered – and, thus, drawn – separately. The draw() function of the miviPIANO class (code ref. 35) illustrates this by having little more than a call to a function that draws the body and another call to one that draws the keys. The drawing technique behind each call, however, differs greatly. Of these, we will begin by explaining the former – the piano body.

	
	4.3.1 the piano body

	
	The piano case and keyboard are, of course, connected in terms of proximity and dimensions, namely width. Therefore, before drawing the body, we must know where and how big the keyboard is. To start, we simply assume all keyboards to have the same height and depth of key – variations of size are viewed proportional to the body, and thus can be accommodated by a scaling in that field. However, the width – defined by the number of keys – is variable and, unfortunately, due to the configuration of the piano’s keyboard, this is not simply a case of taking the width of a key and multiplying it by the number of keys. The existence and non-uniform distribution of black keys prevents this approach and, even though their dispersal pattern recurs in each octave (as defined by the pitch variable), because we can start at any offset within an octave (to accommodate all types of electronic keyboard), a simple algebraic equation for calculating the total keyboard width is not readily forthcoming.

	making room
for the keys
	 Instead, using a similar algorithm to that employed to actually draw the keys, we simulate their creation and, instead of drawing the keys, increment a cumulative width variable in place of each white key.

 The calculation is performed by the function getKeyboardWidth() (code ref. 36), which is called in the miviPIANO constructor (code ref. 08), and returns a float representing the width. This is then stored in a class-scope variable, keyboardWidth, to enable access to it by any functions that require it.

 The algorithm employs two loops, one nested within the other. The first iterates through octaves, the second through the notes in the octave. The pattern of notes, on a piano, alternates between white and black except for every 3rd and 7th pair, where the black is absent. Hence, we simply guard the inclusion of black notes with a conditional statement to the same effect – if not the 3rd (j=2) or 7th (j=6) pair then draw a black note. Every time a note is drawn, we check that we have not met the limit on the number of notes (dictated by range) – terminating the loops if we have. Because the break statement only exits the closest nested for loop, we are forced to recheck the condition after exit, to enable us to exit the parent loop and subsequently, return the thread and result to the calling process.

 We take note of the octave offset, by pre-adding the missed notes (12 notes per octave × number of octaves) to the currentKey counter. In a similar way, we account for the pitch offset, but this also requires the first instance of the inner loop (notes in the octave) to be offset. This is done when the loop is first executed (when i=0 and j=0), by setting j to the appropriate next note. The structure of the loop demands that this be a white note, so the new j is determined from an array, nearestWhite, which maps the note of the pitch offset to the nearest white note.

 Ironically, the black keys, despite causing the initial dilemma, are not accounted for, as they merely overlap the whites’ real estate. Note also that this algorithm will produce incorrect (but non-fatal) results if the keyboard begins or ends with a black note. However, given the absence of such pianos in common use in the real world, this is not considered a problem.

	the piano body
	 In the piano’s case, excepting obscure forms of modern jazz, a pianist only manipulates the driver and, thus, the body will largely be a static object. We can take advantage of this fact by knowing a little about how OpenGL communicates with the graphics hardware, and using OpenGL display lists (explained in Appendix B).

 The body list is ‘compiled’ in the function initBody() (code ref. 37), which, ideally, we only want to call once per instrument outing. So, at first, it would appear sensible to call the function during the instrument’s constructor. However, it is possible that the draw() function is called before this procedure, through an eager idle() call from the host. Thus, before calling the procedure to draw the list’s graphics, in draw() (code ref. 35), we check that the list is non-zero. If we find that it is zero, then we call initBody() to rectify the situation. This also means that we can post updates for re-compilation of the body by simply setting body to 0 explicitly. So, when the parameters affecting keyboardWidth, which, in turn, affect the body, are changed, the constructor can force the body list to recompile accordingly.

 Further evidence of OpenGL’s lack of support for sub-windows emerges when we see that any compiled display lists are lost when our OpenGL window is destroyed. Because our window can be closed without terminating the plugin, our MIVIInstrument object can persist without a body list. Thus, when we re-open the window, the instrument body is drawn from an empty list – it does not exist. We must, therefore, post an update for recompilation, which we do through the calling of the MIVIInstrument::reinit() (code ref. 26), and is defined in the MIVIInstrument constructor (code ref. 07). As before, this function merely sets the variable body to 0.

 On a positive note; in order to change the style of the piano (from upright to grand) for example, we could simply place a switch statement in the initBody() procedure, which, conditional on the active style, will compile the appropriate piano body-style code accordingly. So, just as the *instrument pointer provides a generic interface to the MIVIInstrument type, body also represents a single point of contact to the piano body’s 3D object.

	drawing the case
	 In the move from runtime interpretation to compilation, no change in syntax or grammar is required, and we can specify the 3D shapes and attributes in the traditional OpenGL way. To create our body (code ref. 37), we simply position and stretch four cubes, which are created using the GLUT shape macro glutSolidCube(). Each time, the modelling matrix is stretched using glScalef() beforehand, so the function returns an appropriately extruded quadrilateral – a cuboid, as opposed to a cube. The final two, forming the ribs at each of the keyboard, are identical in all respects save location. Thus, we place them in a loop that calls the same functions, but varies the translation parameters between the two iterations.

 Once we have specified the body graphics, we call glEndList(), which will convert our high-level language into bits and bytes, ready to be sent to the hardware with glCallList().

	
	4.3.2 the keyboard

	
	The situation is different when dynamism is required, as in most instrument drivers. For instance, in piano keys, we require freedom of movement for each key and the ability to change their attributes, such as material (for highlighting purposes). Therefore, it is unfortunately necessary to execute the varying commands at the higher interpreted level, as is done in drawKeyboard() (code ref. 38).

	
	 Unlike some – notably monophonic – instruments (as we shall see, in the case of the flute, later), the piano boasts the simplest mapping of MIDI pitch to key possible – one to one (1:1), a bijective function. Put simply, within a defined range, each MIDI pitch corresponds to exactly one key on the piano keyboard and vice versa – each key on the keyboard corresponds to exactly one MIDI pitch. Interestingly this is not true for the score, which is many to one, a non-injective function, since one pitch can normally be expressed in at least two ways using accidentals – an Eb is equivalent to a D#, and thus the same key.

 Thus, as we did in the getKeyboardWidth()function (see section 4.3.1), we can iterate through octaves and octave notes, simultaneously drawing the keys and incrementing the currentKey counter. At each point where a key is created, the counter will unite the 3D object with a note object in the notes array by using the current value of currentKey as the array’s subscript. Again, as in getKeyboardWidth(), we align the two scales at the outset, so as to correctly line up the instrument’s dynamic range with the right domain of the array.

 Now, displaying the condition of the note is a simple matter (code ref. 39). Before we draw the key, we inspect the corresponding status in the notes[currentKey] variable. Outside of the tutor system (discussed in section 5.2), it is simply a matter of checking to see if the note’s velocity is non-zero. Depending on the result and the display preferences set by the user, the key can be depressed (by translating it) or highlighted (by changing the material) or both.

 Otherwise, if TUTOR_MODE is set to true, we need to adorn the keys with performance directives and tutor instructions. Hence, prior to creation of the 3D keys, which are, in essence, stretched cubes, we use the rules (discussed later in section 5.2.3) to assign the appropriate material for each key (as defined at the beginning of the procedure) with glMaterialf() and properly displace them with glTranslatef().

	utilising the OpenGL

stack architecture
	 Notice, however, that after sinking a white key, we do not have to rise back up before creating the next. This is due to our use of the OpenGL stack (as discussed in Appendix B). Instead, all we have to do is pop the stack, thus reverting to the same position we were in before the key was created – where we last pushed the stack. To move to the base of the next key we simply translate the ‘cursor’ along, horizontally. Further inspection of the code shows that the creation of a black keys, through the use of the stack, results in no net movement of the cursor, as reflected in the code for getKeyboardWidth(), previously discussed. The stack will make itself even more useful when we it come to implement the key mechanism of the flute.

	
	

	4.4 a ‘miviFLUTE’ subclass

	fig. 4.3 - the miviFLUTE

instrument model
	
[image: image14.png]

	
	In many respects, the flute lies at the opposite end of the musical instrument spectrum to the piano. It is driven by breath, can only play a single note at once (monophonic
), small, portable, often metal (though a ’woodwind’ instrument) and produces a completely different timbre of sound. Thus, a successful implementation of a miviFLUTE class, as a progression from our miviPIANO class, should demonstrate the universal applicability of the MIVI concept in a wide range of instruments and music education in general.

 In this project, we implement a Boehm flute [5], as pictured in figure 4.3, without the common modern extension of Briccialdi’s Bb thumb lever or the Dorus Key.

	common traits
with miviPIANO
	 However, let us start with what we already know. Like the piano, the flute’s defaultGMvoice and name are set in the constructor (code ref. 40) and the default initialisation code of MIVIInstrument is called. Similarly, the flute’s physical structure is segregated into static and dynamic parts – the flute body and key mechanism – and, like the piano’s, the flute body’s 3D graphics are pre-compiled in initBody() (code ref. 42) using OpenGL display lists. It, therefore, follows that the draw() function (code ref. 41) also shares a similar dynamic nature with that in miviPIANO.

 Overall, these front-end aspects of the miviFLUTE class allow it to be considered, as seen by the rest of the MIVI plugin, equivalent to miviPIANO and MIVIInstrument, permitting the latter’s use as a generic interface to the instrument.

 Inspecting and comparing the two instrument’s class declarations, however, we see that the principal difference lies in the private scope – once given a generic task, such as ‘draw the instrument’, each sub-class uses its own unique methods and architectures to execute it.

	
	4.4.1 the flute body

	
	Superficially, the shapes of bodies differ. Although there is little remarkable about this, in itself, the initBody() function (code ref. 42) does introduce the use of the functions drawTube() and drawRib(). These are the flute’s own local OpenGL shape macros. As is visible in the source code, the tube shape – a cylinder with ‘bevelled’ ends – not only represents the main body of the flute, but when appropriately scaled, the rods and even keys, as well. It is therefore useful to have this code separate and simply call it when needed, exactly as we do with the GLUT function glutSolidCube() in the miviPIANO class.

 The function drawTube() (code ref. 49) simply draws three strips of quadrilaterals; one for the mid section and one for each of the ‘bevelled’ ends. In the latter case, one edge of the strip is anchored at a single point in space, resulting in a cone-shaped appearance, giving the cylinder a crude, but effective, rounded or bevelled cap. The function drawRib() (code ref. 50) exploits drawTube() by simply scaling the result in one dimension to produce a more disc-like form.

 The initBody() procedure simply executes one large cylinder with drawTube(), ribbed at 3 points with drawRib(), to denote the common separable segments of a flute.

	
	4.4.2 the key mechanism

	
	From just initial inspection and impression, a large difference between the piano and flute instantly makes itself known – the fingering, or key, mechanism. Far from being a regular pattern of ivory white and ebony black keys, the flute seems a chaotic muddle of metal rods, tubes, axles and buttons. Far from chaos theory, the mechanics of the flute are almost literally the art of science
, but cannot nonetheless be encapsulated in a simple recursive algorithm, which relies on repetition and regularity.

	
	 Thus, resulting from this elaborate mechanism, another big difference from the piano is how the flute is played. Instead of a simple 1:1 function of note to key, as in the last section, the flute’s key mechanism boasts a far more complex mapping, where, more often than not, several keys must be pressed to produce even one solitary pitch. Additionally, due to the finite and limited number of available keys, any one key can reappear as a constituent of any number of other pitch fingerings. Furthermore, the flute is such that there is sometimes more than one way to finger a single note.

 Yet another problem appears when we take a closer look at the flute’s construction. Each key can be of a variety of shapes and is connected to an axle. An axle can simultaneously be home to other such varying keys and, itself, can form but one of many axles in a rod. The rods serve as a shaft, which allow the axles to rotate. The keys, axles and rods are connected so that, when a key is pressed, not only will the hole (under the key) in the flute’s main air tube, be closed, but so will any hole under any key connected at any point along the entire axle. Thus, technically, it is not only notes that map to keys, but other keys too.

 It should already be obvious, to the reader, that simply aligning a variable like currentKey, as before, will not be enough to properly represent and identify the notes on the instrument by itself. Instead, we need to devise of a method of encapsulating the instrument in data, then constructing an algorithm that can, given the data, construct our 3D model. For this we take a largely object-oriented top-down approach and use the structure of the instrument in the real world to base our simulated model on.

 This suggests the definition of different data types for keys, axles and rods. However, since the axles appear inside the rods, they will not be visible in the 3D model, and we take the liberty of omitting their explicit implementation. Instead, we will emulate the causal effects of one key press over another in the definition of the keys themselves.

	fig. 4.4 – structure of

our flute model
	
[image: image15.png]

	implementing
the flute rods
	 First, however, we must provide a foundation for the keys – the rods. In appearance, they are no more than long thin cylinders placed at certain angles and heights around the tube, and this is exactly how we can define them. The array rods (code ref. 43) is of type fluteRod. Each fluteRod (code ref. 12) comprises of the components vOffset, denoting the rod’s position along the flute body from the base, length, aptly denoting the length of the rod, and pOffset, denoting the (polar) angle of the rod around the main body. In the array, we give the specifications of the five rods, characteristic of a typical Boehm flute. Then later (code ref. 47), we iterate through each, performing the appropriate translation, scaling and rotation (respectively) before drawTube() is used to actually create the rod.

	implementing
the flute keys
	 Like the flute’s rods, we give its keys their own data type, aptly named fluteKey. Similarly, we use this type to construct an array, keys (code ref. 47), encapsulating all the keys in the flute model. To marry the various keys with their respective rods, we add an extra dimension to the keys array, where the subscript identifies the rod.

 The variety and functionality of keys make the key type far more complicated than that of the rod, which we can see by looking at the declaration of the fluteKey type (code ref. 13).

 This time, instead of a distance along the flute’s body, we define vOffset as the key’s distance along its rod. However, we use this component in much the same way – as a parameter to a translation function.

 Next, we identify the shape of the key, in the type component, given a small selection of key shapes – defined in the enumerated type keyType (code ref. 11). Later, this is used in a conditional statement to select appropriate code to draw the desired shape. The direction component simply tells us whether the key points clockwise or anti-clockwise around the tube, using an enumerated type (code ref. 10). Then, because the different key types and shapes have different properties, the next three float components are reserved to handle these extra data. For example, a ROUND_KEY can vary in size, whereas a DRIP_KEY (such as a trill key) can change both length and orientation. These parameters, like vOffset, are brought to bear when the keys are drawn and are, similarly, passed to functions like glScalef(), glRotatef() and glTranslatef(). However, their context – and thus their use – is determined by way of the previous type component.

 The final two attributes relate to how the instrument is fingered, and thus require knowledge of our fingering implementation. The structure, as it relates to the instrument, is illustrated in figure 4.4.

	implementing
fingering
	 Thinking about how a flautist would approach a note on the page, we see that we need a one to many (non-injective) relation, where one note, on the stave, causes the player to depress a certain combination of keys. Thus, we need an array where each member represents a configuration of key presses and whose range is a subset of the notes array’s total domain, equal to the range variable. Within this interval, which should correspond to the entire dynamic range of the flute, the relation between these two dimensions is, itself, 1:1 – one fingering combination to each note. Thus, when the time comes, the lookup can be performed using a variable representing the note, similar to the original currentKey counter, as the subscript.

 The structure of each fingering configuration, encoded in the fingerings array (code ref. 45), is simply a collection of 1’s and 0’s, where each ‘bit’ tells MIVI if the key (associated with the bit’s offset) is pressed or released. When it comes to drawing the keys, the procedure will iterate through the keys array, making it sensible to define the relation between key and offset as part of the fluteKey type. This is achieved using the finger component, which enables the mapping of flute key to fingering configuration offset.

	monopolising
the musical input
	 Because of the flute’s monophonic nature, this currentKey equivalent for the flute will only represent one note throughout the drawKeyMechanism() procedure. However, the notes array, supplied by MIVI, still holds the information for all pitches – instead of explicitly telling miviFLUTE which note is being played, it broadcasts the status of all notes.

	
	 MIVI’s notes array is by definition polyphonic, to allow for the handling of pianos and other such instruments. Indeed, most MIDI output devices will accept and play a polyphonic input, even through a flute voice. In our VST host, there is nothing to stop chords being transmitted to the MIVI flute. Thus, before embarking on any graphics operations or fingering decisions, we must cycle through the array and find which one note is on. Since this is likely to be a popular operation amongst monophonic MIVI instruments, we export this simple monopolising algorithm to the global MIVI scope, as the function getMonoPoly() (code ref. 32). Note, however, that the loop cycles from the top end of the array down. The array will return the first note, so, in the event that a multiphonic signal, such as piano music, is passed to the function, it has an outside chance of extracting the normally higher melody line (or ostinato) from the right hand’s notes.

 Similarly, the algorithm could be amended to iterate in the other direction, to siphon out any bass line, more useful in bass instruments like the bass guitar and double bass. Such filtering techniques grow in complexity very quickly and present an interesting area of study, auto-arrangement [12] – where various unassigned lines of music are automatically distributed about the instruments of an ensemble (often the orchestra), based on pitch, complexity, required skill and other characteristics.

	optimal fingering
algorithms
	 The process becomes more complex when we are forced to decide between multiple fingerings – our 1:1 mapping of note to fingering becomes 1 to many again. This time, though, we deterministically choose a result in the domain. We store these alternative configurations, as an extra dimension of the fingerings array. However, alternate fingerings do not exist for all notes, so we must somehow mark those that do. Extending the information stored about each configuration to additionally flag the existence of an alternative configuration, achieves this. Now, not only need we only make a decision when this flag is set, but if more than two fingerings were to be available, the same test can be performed on the alternative configuration to check if yet more are available. This, of course, can continue recursively, in much the same fashion as a linked-list.

 At this point, we are ready to implement code (code ref. 46) to decide which configuration is best, given an alternative. Because Boehm’s book states the existence of, at most, two fingerings per note, we will forego the implementation of a recursive decision maker, and simply compare the two directly. Fingering algorithms, as discussed in the section 2.3.2, are already a subject of advanced study and debate, so little would be gained by attempting to produce an algorithm anything more than practical for our purposes. Hence, when a change of note is detected, and thus a change of fingering is warranted, we compare both the fingerings with the previously chosen fingering, penalising them for change in individual finger position they require. After the loop, which iteratively does this for each finger, ends, the decision variable favourDefault will be used to set the cheapest new fingering.

 The choice is then assigned to the currentFingering object, which is of type fingering (code ref. 14). A fingering object has two components; bank, which identifies which dimension of the fingerings array the fingering in question belongs to, and note, which is used to index that dimension of the fingerings array and simply represents the pitch (as returned by getMonoPoly()). With this, we revert to a 1:1 mapping of note to fingering

	drawing the keys
	 This gives us enough information to proceed with the creation of the 3D model. To this end, we iterate, again with two hierarchical loops, through each rod (code ref. 47) and each rod’s keys (code ref. 48), respectively. Though the rods are simply a product of their parameters, the keys, which must present meaningful information to the user, are more involved.

 We know the current note and, thus, the current fingering configuration. So, at the creation of each key, we can lookup in the fingerings array the offset dictated by the current key’s finger component (2nd subscript), of the bank we chose to be the optimal (1st subscript), and see if the key should be depressed or not, given the current note (3rd subscript). Before doing so, however, we check to see if the key is fingerable in some way, by verifying that the finger component is non-zero.

	axle emulation -

dependent keys
	 As mentioned, when a key on one axle is pressed, it closes other keys on the same axle simultaneously. Thus, we consider these keys as children of other keys, who must obey their parents. The mysterious three parent components of the fluteKey type thus follow a similar principle to the finger component. When their parent keys are denoted depressed in the fingering configuration, they must be depressed too. We use a simple iterative loop to repeat checks, similar to the finger component, for each of the three parents.

	
	 The mapping of note to key, as implemented in our system, is illustrated in figure 4.5. In it, one (monophonic) pitch from the notes array, monopolised by getMonoPoly(), denotes the active fingering of the fingering array. Then an optimal fingering algorithm denotes the active bank of the fingering array. These two values are stored in the currentFingering object’s fingering and bank component respectively. In the diagram, ‘Active Fingering’ represents the fingering identified, and each member correlates with a key on the flute, encoded as a fluteKey in the keys array. Finally, our axle-emulation ensures that the non-fingered keys are also depressed appropriately. Any depressed keys are emphasised in the diagram.

	fig.4.5 - mapping

of note to key
	
[image: image16.png]

	
	 A problem, however, arises when the user is learning how to finger their own instrument, and when several keys go down at once – they must arbitrarily decide which should be pressed. No computer-generated fingers, as yet (see section 7.1), exist to relate this information. So, we resort to our second display mode – highlighting. All we must do is present the fingered keys and dependent keys in different colours. For this, we choose our default red for the first, and a less saturated red – pink – for the second. Indeed, it is not necessary to highlight the latter keys at all, so we make this extended feature explicitly toggleable on the interface (see section 5.3).

 Depending on the display mode set by the user, the results of these checks and lookups will have different influences. For example, regardless of whether the key is active due to fingering or due to dependency, we want to depress it when in DEPRESS_MODE. However, in the highlight modes, the key’s material will change in each case. Thus, it is wise to hold off any graphics operations until the results are known. This way, we avoid having to repeat such operational code in each conditional branch – both the finger and parent checks. Instead, we flag the results, in the two-bit Boolean array noteOn, so that, later, we can use simple bit-wise comparators to set the appropriate mode later.

 The remaining code simply uses the parameters of the keys array to draw the flute’s key, where the ROUND_KEY uses our proprietary tube macro and the DRIP_KEY, GLUT’s sphere macro.

	exploiting the OpenGL
stack architecture
	 Throughout the code are littered the commands glPushMatrix() and glPopMatrix(), which, as we discovered in our discussion of the piano code, manipulate the stack, storing the OpenGL ‘cursor’ for later retrieval. In the flute model, this tool is used to a far greater extent.

 Whereas in the previous case, most of stack operations could be easily implemented manually (by simple return glTranslatef() functions), the variety of flute rod positions and rotations coupled with those of the individual flute keys (which also add scalings) would, this time, make a similar approach far more difficult and costly.

 Instead, we push to the stack when we start each rod, so that when we have finished drawing it, we need only pop it to continue with next in the same fashion. Likewise, we do exactly the same thing with the keys on the rods themselves; after each key, a single glPopMatrix() command returns us to the base of the rod.

	
	chapter 5 interactive subsystem

	
	Although the VST host should handle all the labours involved with setting up MIDI IO hardware and the communication with these devices, it is still necessary to set-up and handle MIVI’s communication with the VST host itself. In section 3.1.3, we explained how our plugin requests these resources from the host. In this chapter, we explain how that information is handled and converted into a format that can be easily displayed.

 We then proceed to cover how a tutor system is relatively painlessly integrated into the MIVI system, from an abstract DFSA form.

	5.1 receiving MIDI

	
	Just as with waveform data in an effect, MIDI information is passed to the plugin via a buffer, taking the form of an array of VstEvents, of which we are interested in those of type VstMidiEvent. A function, aptly called processEvents() (code ref. 30) is then called at regular intervals, by the host, to process the incoming data.

 In this function, we simply iterate through the events in the buffer and, for MIDI events, extract the MIDI message’s constituent components: the status byte and the first two data bytes. For our purposes, we are interested in solely the Note On and Note Off messages, and we catch these by checking their respective hexadecimal codes, given in the standard MIDI specification [31], against the status byte. We then assign the filtered result to a temporary variable, status. The variable channel is also set using the bits from the status byte, and represents the MIDI Channel of the incoming message. All other MIDI events are implicitly filtered out in the ensuing switch statement.

 Although the data bytes can, in general, represent anything from pitches to instrument numbers, depending on the event, in the case of our messages, the first two data bytes will always represent the pitch and velocity of the note, and are assigned to the local variables note and velocity, respectively.

 In these real-time processor functions, quick execution and prompt return are essential to maintaining the real-time integrity of the system. For this reason, and because the captured information is of use to multiple processes, the data, following a little filtering, are simply stored in a global array variable, notes, enabling their asynchronous communication [6] to such processes, as they require the information.

 The variable notes is an array of type note, indexed by pitch. The subscripts, however, are re-calibrated from the VST default, by a factor of -12. This is because VST caters for instruments that go below the typical instrument dynamic range – denoted to the user, in Cubase, as negative octave numbers. Not only does this calibration legalise the subscript range in C, as negative references, were they to compile, would result in potentially dangerous memory accesses, but also allows us to marry our offsets and octave numberings, in MIVI, with that in the music texts listed in the biography. Note, that the potential occurrence of the ultra-low pitches prompts us to guard against the potential for illegal offsets.

	representing
note velocity
	 The note type (code ref. 04) consists of two components – velocity and status. Intuitively, the velocity component represents the MIDI velocity of the note denoted by the subscript of the array. Although the velocity component is dimensioned as a 32-bit integer, throughout the rest of our implementation, it will be treated as though it had only two states, zero and non-zero, ordinarily expressible by a 1-bit Boolean variable. To represent, to the user, the pressures, velocities and similar directions, entailed in the instruments’ handling, it was envisaged that explicit or implicit display of these values (using a gradient highlight, for example) would be helpful. In the context of our piano and, more notably, our flute, this would only serve to clutter the display, making it less intuitive to the learner. Incidentally, a gradient highlight would also conflict with the hard-edged highlight system employed in our tutor system, discussed in the next section. We, nonetheless, retain the ability to track note velocities, pending the possible discovery of a shrewder method of presentation or the potential for use in the context of other instruments, and also to illustrate the principle to the reader.

 The status component is of use in MIVI’s interactive tutor system and should not to be confused with the MIDI status byte. Its applications will become apparent in the next section.

	 5.2 the tutor system

	
	In a similar way to typing tutors, we will introduce a tutor system into MIVI, for use with our piano instrument model. However, since MIVI is essentially its own host system, for different graphical instrument models, building such a tutor system into the core MIVI architecture makes it automatically available to any guest instrument. In the same way that VST provides a MIDI abstraction layer to MIVI, MIVI can provide an abstraction layer for the tutor functionality. In both cases, it is up to the respective guest objects – plugin or instrument model – whether they take advantage of the available information. So, although only the piano instrument model will take advantage of this new core functionality in our implementation, it will be readily available to the flute and any other instrument models, should subclass support appear in the future. The following paragraphs describe how the feature is hosted and handled by MIVI.

	
	5.2.1 designing the tutor system

	
	Starting at the beginning, MIVI must educate the user as to the relationship between notes on the score and the pitch control mechanisms of the instrument – the keys, strings, finger positions, etc. This is simply achieved by presenting our visual representation of the instrument and manipulating the graphical model with respect to the configuration of the instrument given a particular note for input. This might be through the showing of key depression or highlighting, for example.

	
	 The next stage is to start playing phrases and pieces of music. In MIVI, it is a simple matter to make the MIDI input source a MIDI file. In the context of a piano, the combination of this functionality with the depression and highlights will lead to an appearance similar to that of a pianola.

 A crude, but apt, analogy of piano playing is that of typing, both involving potentially fast and complex fingering on a keyboard. The most popular method of learning to type is by working your way through the lessons of a typing tutor – a piece of software that presents passages of text and, using an onscreen representation of a computer keyboard, shows the user which key to press.

 Tutor systems are not a new development in music, and already exist in some entry-level home-keyboards [8]. Instead of a representation of the keyboard, these electronic instruments exploit their physical presence and adorn the keys themselves with the prompts – be it by lighting an LED adjacent to the key, or the key itself. As yet, though, no attempt has been made to port the feature to non-keyboard devices. Indeed, for many instruments, the instrument’s body does not present itself as an appropriate visual display device, for the player’s attention is usually fixed elsewhere.

 In the case of MIVI, attention rests on the computer screen, and disadvantages incurred by being apart from the actual instrument are, to an extent, balanced by the flexibility a computer-generated image can afford. On the screen, we can: highlight the keys with any hue of colour, depress them without interfering with the user’s similar endeavours on their own instrument, etc. – even bend, or break, the laws of the physical universe. Naturally, the system requires the user’s instrument to be MIDI compatible – a MIDI keyboard, in our case – so that our learner will be able to interact with the tutor, and both feedback and instruction can be given based on the user’s performance.

	user interaction
	 Ideally, as the note appears on the score, it will be denoted, in some way, on our visual representation as ‘expected’. At this point, MIVI could either wait until the corresponding note has been played on a connected MIDI-input device, before presenting the next note, or continue regardless, recording, or marking, the note as late or absent.

 With the first approach, which works in a similar fashion to a typing tutor, the user will be able to easily chart their progress as the music becomes more cohesive and harmonious. The second, however, has the added advantage of teaching ensemble skills. When in an ensemble, it is the leader, often a conductor, who will keep the rhythm, not the individual instrumentalist. Thus, performers will require the ability to either catch up or restart at some later point in the piece, in sync with fellow musicians.

	
	5.2.2 modelling interaction

	
	In any case, our musical tutor will consist of different inputs, such as Note On messages from the score and the user, and different states, to denote when the tutor is waiting for a keystroke from the learner, when it is not and when the user is late in making a keystroke, etc. We can, therefore, model the process using a deterministic finite state automaton (DFSA).
 Given that each note is defined using two MIDI messages, there are two levels of strictness available to enforce on the learner, each corresponding to a level of skill. In the first, we teach the learner to simply hit the right keys, checking their mirroring of Note On messages. Once they have mastered that level, we can demand that they also mirror the Note Off messages, thus schooling the learner to hit the right notes, for the right amount of time. The second step largely involves performing the processing for first twice, once for Note On messages and once for Note Off messages.

	fig. 5.1 - DFSA for
beginner tutor lesson
	
[image: image17.png]

	
	 The DFSA for the first step is illustrated in figure 5.1. Simply, the ellipses in the diagram represent the various states of each note in the tutor system. An event (transition), such as a MIDI message, will take the note from one state to another, and form the arcs of the diagram. The illustration employs the same terminolgy used in the code (code ref. 03). Finally, the machine is started in the IS_OFF initial state, denoted by the orphaned arc entering it with no origin and no event.

 If a Note On is received from a specific source, the next message to come from that source should be a Note Off. Such events adhering to this convention are marked as ‘legal’ in the diagram. However, there is always the possibility that communications interference, or program error might result in illegal events. Indeed, MIDI transmissions are very low bandwidth and seldom have any error-correction, so errors are possible and represent exceptions that should be handled. In this simple automaton, such events merely loop back on themselves, resulting in no change of state.

 As mentioned, once the learner has mastered the beginner skill level, they can move on to expert mode. The expert DFSA is, by definition, at least twice as complex, because we have to track twice as many states and take greater care of Note Off inputs.

	fig 5.2 - DFSA for
expert tutor lesson
	
[image: image18.png]

	
	 The diagram of the automaton, in figure 5.2, shows that, for the most part, working out the additional ‘legal’ events is simply a case of mirroring those already existing in the beginner DFSA – hence the symmetry.

 In our implementation, we maintain the policy of looping illegal events back on themselves. However, we could implement some exception handling for illegal events and potentially tolerate errors in transmission and event generation. When we receive two identical messages consecutively and from the same source, we can either assume, as we have been, that the message itself is an error and ignore it, or we can assume that we have missed a complimentary message in-between and simulate the missed occurrence of it, then the new message. Instead of doing two nextStatus lookups, we can hard-wire these eventualities into the automaton, simply by following the complimentary message’s arc, then the new one’s, and inserting this end state as the next state for the original illegal event. Such potential modifications are illustrated in figure 5.2.

	
	5.2.3 instructing the user

	
	Now that code exists to handle the input and internal state of the tutor system, we need to promote this information to the display and give instruction to the learner. Given the state, we use simple colour-association (green is to go and safe as red is to stop and danger, etc.), in our implementation, with these straightforward rules…

	
	1. If the user is expected to manipulate a key, then highlight it green.

2. If the user is late in manipulating a key, highlight it red.

3. If the user has hit the wrong key, highlight it red.

4. If no action is required upon a key, do not highlight it.

5. At each stage, show the actual physical configuration of the piano, as it should be.

 Note that: (1) by ‘manipulate’ we mean either ‘depress’ or ‘release’, (2) rule 4 dictates that if the original piece of music states that the note should be depressed, it is displayed so (the learner has no influence over this aspect), and (3) rule 3 is equivalent to ‘if the user is early in manipulating a key, shade it red’.

 Thus, the learner can take a similar, simple approach to tackling the lesson…

1. If a key turns green, the users attention should be attracted to it, and they should attempt to mimic the position (depressed or released) of the onscreen key on their input device.

2. If a key turns red, the user has made an error – their attention should be alerted to it, and they should proceed to toggle the indicated key.

3. At all other times, the user is required to take no action.

 Effort has been expended to deliberately make the above process as simple as possible, so as not to necessitate a complicated further stage in the learning process. The three steps listed are designed to be easily learnable (or discoverable, through trial and error, given the absence of instruction) and quickly adaptable as a sub-conscious activity – a consideration that does not require pro-active thought. It should also be noted that, depending on the track IO set-up of the host, the user should also be able to identify errors (in red) through the discordant or hesitantly timed sounds their inputs produce.

	
	5.2.4 implementing the tutor system

	
	Conceivably, the first approach to user interaction, mentioned in the closing paragraph of section 5.2.1, could be implemented by transmitting MIDI real-time control (RTC) messages (dictating changes in tempo) to the host, from the plugin. Thus, when the user’s performance slips, MIVI could even slow down and make it easier to catch up. Unfortunately, VST plugins are not given authority to control the host’s playback, and such messages are ignored. Thus, for the time being, we are resolved to concentrate our efforts on the latter approach. Interestingly, one of the canDo competences, mentioned in section 3.1.3, is “sendVstTimeInfo”, so we can only assume support for this is destined for some future VST release.

 For now, however, to vary the difficulty, the user can manually alter the tempo of the piece, using the native playback controls of the host. As in traditional music education, the learner can start at a slow pace and, as they find their performance improving, gradually increase the tempo.

 A further failing of the current VST implementation is the lack of transparency relating to MIDI input devices. Although we will receive the messages from any device connected to this system, and are able to filter pitches, velocities and channels, there exists no way to differentiate between messages sent from connected input devices and those from the host itself.

 In MIDI, we note that, from one source, we should not receive two Note On messages without an intervening Note Off. Thus, introducing the learner’s input to the host’s, as in MIVI, we should receive…

Note On, Note On, Note Off, Note Off, Note On, etc.

 …where the odd numbered events are the notes of the original piece of music (from the host) and the even numbered events are notes received from the attached MIDI device, as the user echoes what they see on the screen.

 However, a problem occurs when the user hits a wrong note. Without knowing the true source, the above approach will force MIVI to assume the note was actually from the original piece of music, and will treat it as such, by requesting another Note On from the user. Then, when the user realises their mistake and releases the key, MIVI will assume the user missed the note and mark it as late. In any case, to rectify the situation, the user will have to repeat their mistake and press the key again.

 We must assume any learner will make mistakes, as learners often do. Thus, the above implementation is likely to confuse the user and inhibit, rather than assist, the learning process.

 Therefore, to enable us to identify which source MIDI messages originate from, for our implementation, we will assume that user input will always arrive via MIDI Channel 16. Thus, before the tutor system will function, the user is required to execute the short, but complicated, procedure of adding a new track to the sequence and setting it to MIVI output on Channel 16. More practical source identification, such as that described, is also in the pipeline for native support in the next release of VST, and it is hoped that this will be available if, and before, MIVI were to be available to a wider audience.

 We mentioned earlier that simply switching a track’s output to MIVI would mute the track. In the case of the tutor system, this can be useful. We want the original music to be displayed and the learner’s input to be auralised. Indeed, hearing oneself play is sometimes the best criticism one can get when learning an instrument. Unfortunately, we need the user’s input to go to both MIVI and an audio output, so it is now necessary to perform the aforementioned corrective procedure on the user’s input channel, making it dual output.

 Conversely, to have the original track auralised, as well as the input track, the user can hear what is expected of them, and when attempting to repeat it, hear their attempt and judge its correctness themselves.

	coding automata
	 Happily, a DFSA is a simple affair to turn into efficient code. In the MIVI source code, we simply use the multi-dimensional array nextState – effectively a lookup table – of consequent states (code ref. 03), indexed by the current state and the event. Thus, simply supplying it with the current noteStatus and the newly arrived noteMsg will yield the next noteStatus. Our array nextStatus also has an extra dimension to reflect the two lookup tables, for beginner and expert skill levels, respectively.

 Below that, the array nextStateReward is defined. With exactly the same dimension as its namesake array, it represents a 1:1 mapping to it, representing rewards (or penalties if negative) earned as each state change occurs. The reader should be able to match rewards for correct and timely actions and penalties for false or late ones. In addition, the reader’s attention is directed towards the EARLY_ON state. Here, the learner has pressed a key, which, at the moment of pressing, was incorrect, and is penalised 4 points. However, as we receive a Note On from MIVI (a MIVI_ON), we assume the user was merely early and refund 2 of the subtracted points, as this is less of a crime than a wholly incorrect note.

 To give the score some meaning, the learner will also want to know the maximum number of points achievable at any point in their recital. Thus, depending on the skill level, we increment the noteCount variable when we receive a Note On, and potentially a Note Off, from the host. Later, the noteScore and noteCount variables are combined to present the learner with a percentage of points achieved out of those available (code ref. 23), which is displayed on the interface (section 5.3). It should, however, be noted that this percentage can become negative, because there is more potential, and higher cost, for error than potential, and reward, for accuracy.

 The lookups of these arrays are made by the function setNextState(), called during the processEvents() procedure (code ref. 30), after the incoming noteMsg has been identified. To do this, we inspect the incoming message, setting a flag if it is on Channel 16 – our input channel – and checking the message type. As mentioned in section 2.1.1, Note Off message’s can take two forms – an explicit Note Off or a Note On with zero velocity, and our code reflects this. This can be traced back to MIDI input devices, where velocity is continuously measured and despatched, as opposed to discretely measured and quantified, as with a MIDI sequencer.

 Returning to the notes array, introduced in section 5.1, the purpose of the status component should now be obvious. Here, we store the current state of the note, indexed in the array. A pointer to the current note and a copy of the incoming message is then passed to the setNextState procedure (code ref. 31). There, we use the three arrays, notes, nextState and nextStateReward, to set the appropriate next state of our note and return the score achieved, which, following the call’s return, is added to a global variable noteScore, representing the cumulative score of the lesson.

	
	5.2.5 eliciting feedback

	
	Our implementation only gives the shallowest of feedback. MIVI could be extended to accumulate more detailed statistics, including counts of late or missed notes and average response times, displaying them to the user upon request or throughout playback, on the screen.

	
	 For example, when the user presses a key too early, a counter of early keystrokes could be incremented, and likewise for late keystrokes. At any point in the piece, by comparing the number of early keystrokes to late, MIVI can inform the user whether they are on average too soon or too late, and advise the need for more or less patience respectively.

 Even more involved statistics might give feedback on response characteristics dependent upon pitch. If, for example, the pianist is always late on notes with accidentals (sharps and flats), MIVI could advise practice in this area. With the introduction of fingering algorithms, the user could even be shown which fingers are, on average, not nimble enough.

 This area represents a field of research not currently in this project’s scope. Thus, the feedback in our implementation is kept to a level that demonstrates its use and integration with MIVI, but not its full potential. The reader is referred to E.R. Steinberg [47] for a more in depth discussion.

	5.3 the interface

	
	In this section we discuss the tools provided to the user to configure and adapt the MIVI application to their personal needs and optimal learning environment – the graphic user interface (GUI).

	
	5.3.1 the MIVI learning environment

	
	It is accepted that each person has a different optimum environment for different tasks such as working, learning and relaxing. In this section, a few simple provisions (many that have already been mentioned) can be easily implemented to help make the learner’s introduction to MIVI as effortless as possible, while aiding the ensuing learning process.

	
	 The first is the provision of rotation controls, which allows the user to take an interactive tour of the MIVI instrument, and thus discover keys, valves and other ornaments whose existence is not obvious from some angles. Additionally, it permits them to adjust the instrument to an orientation they can easily equate to their own real instrument. Such an orientation can vary from person to person, application to application and instrument to instrument.

 In addition to rotating, the user can zoom in on – or out from – the instrument. In combination with the ability, provided by the OS, to resize the OpenGL window, this allows the user to set the optimal size and detail (resolution) of the instrument, as it is presented to them.

 Automating a tour of the instrument, such as that alluded to earlier, is the job of the SPIN button. Although manual rotation should permit a degree of familiarisation with the instrument, a continually and smoothly changing aspect will lend a better acclimatisation with the 3D form of the object, partially reconciling the loss of information inherent in the 2D nature of the computer VDU. Throughout development, this display mode was used to get a feel for the burgeoning virtual model, at each stage, comparing it with the feeling furnished by the real instrument. Although far from being a scientific approach, this did lead the author to consider the instrument as a whole, in contrast to a collection of keys or 3D shapes.

 It is also a common opinion that the computer keyboard represents a more intuitive input device than clicking buttons with a pointing device, like a computer mouse. The implementation of rotational control using the cursor keys therefore follows as a better method. However, due to the provision of similar functionality in the host, over a potentially varying domain of keys (and hence, the conflicts and side-effects that could ensue from a single key stoke), VST plugins are not furnished with a built-in keyboard input handler. Naturally, such problems would also present themselves were GLUT’s own glutKeyboardFunc() to be used in lieu of similar native functionality.

 The application of the highlight, dependents-highlight and depress mode switches has largely been covered in previous sections. To this extent, the only thing left of remark, is their independence of each other, in that the activation of one does not affect that of the others. Although this allows for a wide range and flexibility of display methods, certain inane configurations, such as the sole highlighting of dependents, are possible. Thus, a future alternative would be to define a partial superset of display modes, restricted to those with useful applications, and give the user access to this set, as opposed to the core modes.

	
	5.3.2 implementing the interface

	
	Although our implementation is housed by Microsoft’s Windows™, we have made a policy to favour cross-platform compatibility where we can. Such has been the reasoning behind the choices of MIDI, OpenGL and even VST. Therefore, wishing to avoid obstacles in this respect, the use of the default Windows™ interface, housed in the Win32 Microsoft Foundation Classes (MFC), is not a good idea.

	the VST GUI libraries
	 Since an interface is a common, if not necessary, component of many VST plugins, Steinberg concluded that a sensible move would be to package such interface-creation code in the VST plugin architecture, theoretically making it available anywhere there is a VST host. The VST GUI libraries, as they have come to be known, are a collection of event handlers and controls, largely centred around the use of the universal standard of bitmapped images. The interface, as a whole, thus merely becomes a collage of bitmaps that can easily be displayed, in exactly the same way, on all platforms.

 To emulate effects such as button depression, a bitmap can contain a sub-pixel map – essentially an alternative bitmap to be shown during the depressed state. At the design stage, this merely involves doubling the height of the original bitmap’s canvas and painting the alternative image on the space gained in the new lower half. Throughout the report, we use the VST GUI control type COnOffButton, which – as the name suggests – is a two state toggleable button. On the rare occasion we want only a trigger (a single state push button), we still use COnOffButton, but specify the same sub-pixel map as the original bitmap, so no obvious change of state is evident to the user.

 We package the parameters for button creation in an array, and repeat the necessary code in an iterative loop (code ref. 25), thus saving repeated declarations of both the bitmap and button object and their respective assignments.

 Our images are stored as part of a C Resource file (.rc extension), which is simply a collection of bitmaps, icons, toolbars, HTML and other resources used in the development project. Their ordering in this file determines the integers (beginning at 128) used to enumerate the button bitmaps and events. To make this even clearer, we have defined an enumeration type to give each of the integers intuitive names (code ref. 05), and have used these names in the event handler.

 The event handler (code ref. 33) is simplistic, but practical. Instead of support for mouseover events and “drag and drop”, the only supported event is a mouse click, upon which the listener function valueChanged() is called, with an integer handle as an argument identifying the control that was clicked. Inside this function, a conditional statement controls execution of the appropriate code for the event. This code is kept simple, to enable trouble-free execution and prompt return, and thus needs little explaining; analogue controls, such as zoom and rotation, merely increment or decrement their respective global variables for realisation during a later glDisplay() call, whereas digital controls simply toggle their respective global Boolean variables. The kButtonReset event results in a call to resetMIVI() (code ref. 17), which zeroes all the rotation and zoom variables, then, in turn, calls resetMIDI() (code ref. 16), which zeroes all the notes’ velocities and resets their statuses to IS_OFF. The kButtonTutor event toggles the TUTOR_MODE variable, resets the current score and also calls resetMIDI(). Finally, the kButtonSkill event adjusts the skill level of the tutor system. Although potentially encapsulated, in its current state, with a Boolean variable, the SKILL_LEVEL integer and its resulting switch statement will allow the easy addition of new skill levels, complementing the current beginner (0) and expert (1) modes.

	
	5.3.3 default plugin controls

	
	A select number of standard interface controls are provided as default with all VST plugins. These include the controls to change program (or instrument, in our case). A left arrow, right arrow and drop-down list of available programs serve to this purpose. The VST host, itself, handles the events generated by these controls, which results in the calling of the MIVI::setProgram() (code ref. 19). Here, the current MIVIInstrument object is deleted and replaced with the one of the type identified by the program integer. Note that, again, we have enumerated this integer to a more intuitive textual notation, including PIANO_MODEL_88_KEY, FLUTE_MODEL, etc.

 Additionally, on this panel, an LED-styled button exists to activate and deactivate the plugin, controlling its integration into the current VST song and working environment. The name of the plugin, ‘MIVI’, as specified in the plugin’s dynamic link library definition file (mivi.def), also appears here.

 The last control on the plugin’s default panel is that of a file menu, allowing the loading and saving of banks and instruments. Although no saving of parameters has been implemented, at this stage, brief reflection should be shed in this direction, which we do in the next section.

	5.4 preserving the environment

	
	As much an aid to streamlining music education that MIVI could ever be, it is naïve to presume that the user can acquire all the available knowledge in one sitting. Having optimised their learning environment on the first sitting, it is counter-productive to force the user to repeat this on the next. Hence, the program configuration of MIVI should be stored between calls. With VST, there are immediately two methods available to us.

 A normal effect plugin will most often be used in the composition of a song, and the composer will demand the same persistence of settings between each composing session. Hence, VST offers a plugin the opportunity for its settings to be saved in the song’s own file (.all extension in Cubase). To achieve this, all the plugin must do is register the required settings with the VST host and inform it of the current value, as and when it changes. The host, then, has enough information to perform the save process.

	MIVI file format
	 One added benefit of registering parameters with the host is that they can be automated by MIDI messages embedded in the song. Although we cannot expect the user to know how to embed such messages, it would allow the founding of an almost proprietary MIVI song file format – songs that have been pre-configured and optimised for use with the MIVI plugin. The configurations to control auralisation and transmission of MIDI to MIVI, for each track, could be additionally pre-established. Such songs would be as easy to distribute as MIDI files (over the internet, for example) and could also form a record of progress, as the user saves the state of the song after each lesson, to recommence upon successive loads. Feedback statistics could then be restored at each session, and thus give song-specific performance feedback, such as the quantative strengths and weaknesses of the learner’s performance at various bars and phrases in the piece.

 The second method is somewhat more involved, and employs the aforementioned file menu. VST can provide the plugin with a byte stream, so that the plugin can transmit and receive ‘chunks’ of arbitrary data to and from the host. The file menu allows the user to create and select external files (.fxp extension) for VST to place this data in. Aside from this common dialog interface and proprietary ‘chunk’ data format, this save method is not far removed from normal data IO streams available to most programming languages. However, by establishing these two requirements, VST allows you to write platform-independent code – it is now up to the host to translate the ‘chunk’ to the OS’s native word size and present the user with a file selector tailored to the OS’s path and file structure.

	
	chapter 6 evaluation

	
	In this section, we evaluate the project, with respect to the goals identified in section 1.2. They were (1) the creation of an accessible, computer-based visualisation of musical instruments coupling interactivity through musical (MIDI) input, and (2) the application of this software in the field of music education.

 A comparison of our implementation with the specifications of our design, as discussed in the last three chapters, demonstrates the satisfaction of the first objective. The application is stable in the VST environment and the graphics models appropriately and realistically respond to stimuli from MIDI input from the user and the sequencer. Through the piano and flute extensions, we have demonstrated the suitability and flexibility of the system architecture of chapter 3 and instrument hierarchical model of chapter 4. The tutor system also functions well, as specified in chapter 5, with clearly observable modes of skill: beginner and expert.

 Unfortunately, our attempts to engender platform independence can only be effectively evaluated through the porting of MIVI to other platforms, which is beyond the scope of this project.

 Likewise, as is the case with most educational simulations (see section 2.4.2), little or no quantative or statistical analysis of the software is feasible [47] – response times to input are observably adequate and graphics performance is a moot issue (see section 3.2.1). Instead, we turn to the experts of the music field to give us feedback from two different aspects – technical and educational. We note, however, that no feedback has been provided by laypersons, to which the application is intended. The author cites two reasons for this; (1) the current unsuitability of MIVI – in its prototype form – to the general public, and (2) the problems associated with locating aspirant – or possibly even failed – flautists and pianists
 who have yet to identify themselves as such.

	6.1 feedback

	
	To obtain a sampling of expertise from the music field, the author approached the University of York’s Music Department, Music Technology Department and Music Society. Response was enthusiastic and positive in all respects, with no shortage of interested parties. Following specially-arranged demonstrations of the MIVI application, their response was as follows:
6.1.1 technical feedback

	
	[1] Prof. P. Main, Dept. of Physics, University of York

Lecturer and Researcher in the ‘Physics of Music’ and Flautist

[2] Dr. A. Hunt, Dept. of Music Technology, University of York

Lecturer in ‘Electronic Musical Instruments’ and ‘Multiple Media Techniques’
From a technical standpoint, researchers in the field of music technology were impressed at the level of integration between MIVI and the VST host environment – concurring that its selection as platform was a well-informed choice. The successful importing of external dependencies such as OpenGL into the environment also fascinated them. They also believed that porting to other OS’s should be a relatively trouble-free affair.

 Furthermore, the principal methods and algorithms of the code (such as fingering, and instrument definitions) met with their approval as well. They were surprised to see the almost direct translation of finger maps (code ref. 45) from the illustrations of Boehm’s book [5].

 Both agreed that the extension to a flute model, in addition to the piano, reflected well upon the architecture. More specifically, Dr. Hunt conjectured that the system presented an excellent platform to qualitatively study the failings of the MIDI specification, whilst also implicitly identifying the necessary extensions. In this capacity, he mentioned a desire to see the MIVI system extended to encapsulate a full complement of GM instruments, though he conceded that sound effects, such as helicopters (voice #126) would only add to completeness, rather than practicality.

 Again, both scholars agreed that the project posed the interesting question of how to represent breath pressure and lip shape – important aspects of wind instrument performance.

 From a music technology point of view, both were sceptical of the software’s application in an educational role. Prof. Main, in his capacity as a flautist, stated that the erudition of flute fingerings came more intuitively from knowledge of hand configuration rather than finger placement. Although iterating, with reason, that this was his own conviction, this opinion recurs in the feedback of the next section. The concept, however, inspired him to picture a physical flute interface – similar to a MIDI flute – where the computer automatically depressed the keys, as with our model. In this situation, the aspirant flautist could simply rest their fingers upon the generic flute finger locations, and allow the computer to move the keys – and, by transitivity, the hands – into the appropriate configuration. It relies on the unchanging position of fingers on the flute and, thus, it remains to be seen if such a device is permissible for other woodwind instruments, such as the oboe and clarinet.

 As pianists, Dr. Hunt and the author identified several problems with the piano tutoring system and solutions that would address them. Principally, the system, in its current state, discouraged the use of the score – Dr. Hunt felt that due to the inflexible timing of the instructions, angst over the appearance of the next note request (shaded green) led to discomfort, and an inability to relax in the environment, requiring constant attention on the graphical model. He stated that he felt ‘separated’ from hands.

 We agreed two solutions that would solve this problem. Firstly, the playback timing could be controlled through user response – a delay, pending note activation, before playback continuation, or simply an inverse connection of tempo to error count (the more frequent the errors, the lower the tempo, the easier the recital). Secondly, the introduction of a visual lookahead device, where future notes gradually ‘fade’ into focus before being required, possibly, turning green to signify their activation. This would give the learner time to prepare for shifts, etc. and also allow them to choose more optimal fingerings.

 On a similar line, Dr. Hunt, feeling that the system was too note oriented said, “I don’t feel like I’m learning music – more like it’s a hand-eye coordination test.” Instead of a note-by-note approach, he advocated the introduction of phrase learning, where a bar or phrase was played back by the host, and then echoed by the student.

	
	6.1.2 educational feedback

	
	1. Edwina Smith, through the Dept. of Music, University of York

Flute teacher and pianist

2. Susan Franks, through the Dept. of Music, University of York / Leeds

Flute teacher (interview conducted over the phone)

3. Oliver Hancock, Dept. of Music, University of York

Student of Music, piano teacher and blues pianist

4. Chris Bluemel, Dept. of Music, University of York

Student of Music and pianist
5. Jennie Wrigley, Dept. of Music, University of York

Student of Music and flautist

	
	From the consumer point of view, all parties were impressed with the concept of the application. Sadly, Ms. Franks’ schedule did not permit a private demonstration of the technology. Others, however, were astounded at the quality, accuracy and detail of the graphical models.

 During the interview, Ms. Smith used her own flute to compare the fingering response of the simulation and estimated that, as a Boehm flute, it was optimal and accurate. She did, however, mention that the model was largely outdated and that a couple of extensions, namely Briccialdi’s Bb thumb lever and the Dorus key would be necessary additions before successful application in the educational sphere was plausible. The architecture of the model permits such amendments with the minimum of fuss, simply through the alteration and addition of parametric data. She also noted that, given the Briccialdi extension, the lever would require a slightly higher degree of key-shape accuracy, for the learner to be able to equate it to a standard modern flute.

 On the subject of alternative and optimal fingerings, she noted that many were only a requirement of advanced play, and that most beginners are initially taught only a default fingering for each note. She agreed that the ability to toggle this feature would be of benefit to the beginning flautist.

 Both flute teachers echoed Prof. Main’s conviction that knowledge of hand configuration is preferable to finger combination, and agreed that the addition of 3D hands and fingers to the model would drastically aid the learning process. During the demonstration, however, Ms. Smith conceded that our current implementation still proved more attractive than the traditional flute fingering tables of tuition books [5]

 REF _Ref3633083 \r \h
[33].

 Oliver Hancock stated that hands would be of use in the piano instrument as well. As a teacher of piano with many younger students, he said that one of the problems he faced was encouraging students away from the solitary use of their forefinger. He also thought that placing the students in a room with a MIVI system would show and guide them through this early playing obstacle, and was of considerable advantage where students are abundant and teachers at a premium.

 In contrast to Dr. Hunt’s view (see section 6.1.1), he said that the direction of the user’s gaze upon the screen was actually of advantage, compared to the fixation on the user’s keys and hands. Indeed, when play becomes competent, the performers gaze should rest on the score, which is also separate from the keyboard, and that the ‘separation’ from hands is a necessary step to proficiency.

 Also in contrast to Hunt, Hancock appreciated the rigidity of the tempo, citing examples of young students, when they use the score, incrementally stepping from note to note without due consideration of their lengths. He feels the feature would give learners an understanding of rhythm, though conceded that this would be of less use to early learners. In the latter case, he concurs with Hunt that the provision of phrase repetition would be a good introduction.

 As with the technologists, the musicians would also be interested in an exploration of methods to display lip shapes upon the embouchure and breath pressures. However, Ms. Smith concedes that, although generic approaches do exist, many people must find their own unique methods.

	
	chapter 7 conclusion

	
	In the last chapter, we established the virtues and shortcomings of the current MIVI implementation. Overall, it appears a success, achieving what we set out to do, and demonstrating the MIVI concept as a worthy addition to the music technology and education field.

 Our exploration, as it stands, however, far from exhausts the potential for research and development. Most obvious is the limited set of implemented instruments (piano and flute) and the demand for human hand simulations, established in the last section.

 Although the prototype engineered in the project demonstrates that the simulation and concept are realistically possible, such matters must be addressed before exposure of the software is practicable in a wider field. As the final chapter of this report, we briefly discuss such potential for further study and development of MIVI. Finally, in section 7.2, the author lends thanks to those people who helped make the project and this report what it is.

	7.1 future work

	
	As an exploration of a new and exciting technology, the MIVI project represents a good foundation and justification for further research in the field. As well as several areas of improvement, identified in the last chapter, we have noted impasses in our progress due to minor deficiencies in the host, throughout the report.

	VST technology
updates
	 From the report, certain improvements in the VST architecture would immediately prompt improvements in the MIVI code. The principal two are:

1. More transparency and flexibility in MIDI IO devices.

Currently, a learner is forced to execute counter-intuitive procedures (described in section 3.1.3 and section 5.2.4) to properly initialise the system, for playback or tutoring. The ability to identify MIDI input devices and specific MIDI output devices would allow for the automation of such procedures.

 The author has conducted successful experiments using direct calls to the OS multimedia hardware-abstraction layer (HAL) to implement such functionality, but notes that such additions would be platform dependent and infringe compatibility.

2. More control over host playback.

As criticised by Dr. Hunt, in section 6.1.1, the inability to tailor tempo and playback to learner performance presents an air of discomfort during tutor lessons. The ability to start, stop, speed up and slow down, were it available would be a relatively painless augmentation to the tutor system behavioural code, but yield a noticeable improvement from the eyes of some learners.

 Both of these are promised in forthcoming releases of the VST technology. A release date, however, for the next update of either the technology or the Cubase host, has not been confirmed.

	General MIVI
	 On a more idealistic note, it would be interesting not only to unleash the MIVI application on aspirant musicians, but also on developers. The ultimate test of a programming architecture is its ability to be understood and fully exploited by programmers who are not privy to intrinsic knowledge of its creation – would another developer be able to start up where we left off?

 This question would be tested by opening the extension of MIVI to General MIVI – a visual mirroring of the 128 instruments of the GM specification – to third parties. The author suggests two ways to achieve this.

 Firstly, the MIVI architecture could be adapted to encompass a plugin environment of its own, where each instrument is a separately coded file – independently loadable into a MIVI host system.

 However, while holding flexibility in the composition of sound-sets (where users might simply download the desired instruments from the Internet), this approach requires considerable modifications to the existing architecture, and thus a less involved approach is favourable, in the short term.

 So; instead, we could follow the modern trend towards open-source software projects (such as OpenGL) and simply distribute the system, in its entirety (both compiled libraries and pre-compiled source files). Again, a practical medium for this would be the Internet
.

 This expansion, in combination with the first VST improvement (mentioned earlier), presents the potential for an additional control in the current user interface; where the user might be able to select an instrument from a list of those available from a particular piece’s ensemble, encapsulated by the open file.

	the human element
	 An addition to the flute model, which met with positive feedback from flautists, would be that of human hand simulations. This would be possible using the principal of Inverse Kinematics, described in Appendix B – however, time constraints inhibited its implementation in this project.

 The addition of more complexity to the scene, however, means that steps must be taken to prevent the hands obstructing parts of the instrument itself. A simple and practical solution rests with making the hands partially transparent. As we described earlier in the project, this necessitates the involved process of introducing alpha-sorting to our 3D objects.

 Such efforts, however, would be further rewarded by the ability to use anti-aliasing techniques. Early experiments, by the author, show that the application of this technique would give rise to a sizeable increase in picture quality and realism.

 Of course, hands are not the only part of the anatomy involved in playing a musical instrument. The head – most notably, the mouth – is something we have also established as benefit to the model. Using technologies incorporated into modern graphics hardware (see figure 7.1 (a) and (b)), this type of face modelling is now plausible in a real-time applications, and could be used to demonstrate lip-shapes upon a flute embouchure, tongue-action. Combined with more explicit display methods (like arrows), aspects of performance, such as breath pressure, might even be displayed.

	
	
[image: image19.png]

fig. 7.1 (a) - the Truform™

technology from ATI

	
[image: image20.png]
fig. 7.1 (b) – the HeadCasting™

technology from Matrox19

	General MIVI
	 Some people have mentioned that their interest in MIVI stems from an innate curiosity in the workings of the instrument, rather than its intended educational nature. On a superficial level, this might involve the modification of our flute model to account for axle movement (as opposed to simulation – section 4.4.2). Such an adaptation might even lend to a more flexible and intuitive model, while making effective use of the OpenGL stack. On a wider and more interesting scope, this might include the ability to lift the piano lid and interactively tour the interior of the piano. In this instance, a question is soon posed about the explicit exhibition of sound waves and their journeys, like that of the violin, described in section 2.2.1. Further study in this area would be able to draw upon existing research in the area of sound-distribution [26]

 REF _Ref3632060 \r \h
[39].

	porting to

other platforms
	 A recurring theme of this report has been the attempt to make our product a good candidate for porting to OS’s foreign to Microsoft Windows™, and we have explicitly mentioned methods and obstacles before us, in this respect. Thus, naturally, an interesting study would be the attempt of such a port. The Macintosh platform – a system still popular with musicians – represents an excellent first choice in this situation.

	other addenda
	 Other additions and improvements that naturally follow from sections of this report include: the elaboration of statistical performance feedback (section 5.2.5), the preservation of lesson state (section 5.4), the update of the Boehm model to account for common flute extensions (section 6.1.2), the implementation of piano pedals, the use of the mouse in direct rotational control, and general improvements in visual quality, accuracy and detail, such as anti-aliasing (section 3.2.2).

	7.2 acknowledgements

	
	My most sincere thanks go to Steve King for both his enthusiasm and encouragement during the lifetime of the project and documenting of this report.

 My appreciation also goes to the developer communities at Steinberg and Yamaha for their guidance at various stages during the project.

 Finally, I am grateful to all involved in providing feedback at various points along the MIVI implementation – particularly to the Music Dept. and Society, here at the University of York, for making it possible.

	
	APPENDIX A General MIDI voice list

	
	In this appendix, section A.1 lists the instrument names of the GM specification [32] and section A.2 shows the mapping of percussion instruments.

	A.1 General MIDI sound set

	PC# Instrument PC# Instrument

1. Acoustic Grand Piano 65. Soprano Sax

2. Bright Acoustic Piano 66. Alto Sax

3. Electric Grand Piano 67. Tenor Sax

4. Honky-tonk Piano 68. Baritone Sax

5. Electric Piano 1 69. Oboe

6. Electric Piano 2 70. English Horn

7. Harpsichord 71. Bassoon

8. Clavi 72. Clarinet

9. Celesta 73. Piccolo

10. Glockenspiel 74. Flute

11. Music Box 75. Recorder

12. Vibraphone 76. Pan Flute

13. Marimba 77. Blown Bottle

14. Xylophone 78. Shakuhachi

15. Tubular Bells 79. Whistle

16. Dulcimer 80. Ocarina

17. Drawbar Organ 81. Lead 1 (square)

18. Percussive Organ 82. Lead 2 (sawtooth)

19. Rock Organ 83. Lead 3 (calliope)

20. Church Organ 84. Lead 4 (chiff)

21. Reed Organ 85. Lead 5 (charang)

22. Accordion 86. Lead 6 (voice)

23. Harmonica 87. Lead 7 (fifths)

24. Tango Accordion 88. Lead 8 (bass + lead)

25. Acoustic Guitar (nylon) 89. Pad 1 (new age)

26. Acoustic Guitar (steel) 90. Pad 2 (warm)

27. Electric Guitar (jazz) 91. Pad 3 (polysynth)

28. Electric Guitar (clean) 92. Pad 4 (choir)

29. Electric Guitar (muted) 93. Pad 5 (bowed)

30. Overdriven Guitar 94. Pad 6 (metallic)

31. Distortion Guitar 95. Pad 7 (halo)

32. Guitar harmonics 96. Pad 8 (sweep)

33. Acoustic Bass 97. FX 1 (rain)

34. Electric Bass (finger) 98. FX 2 (soundtrack)

35. Electric Bass (pick) 99. FX 3 (crystal)

36. Fretless Bass 100. FX 4 (atmosphere)

37. Slap Bass 1 101. FX 5 (brightness)

38. Slap Bass 2 102. FX 6 (goblins)

39. Synth Bass 1 103. FX 7 (echoes)

40. Synth Bass 2 104. FX 8 (sci-fi)

41. Violin 105. Sitar

42. Viola 106. Banjo

43. Cello 107. Shamisen

44. Contrabass 108. Koto

45. Tremolo Strings 109. Kalimba

46. Pizzicato Strings 110. Bag pipe

47. Orchestral Harp 111. Fiddle

48. Timpani 112. Shanai

49. String Ensemble 1 113. Tinkle Bell

50. String Ensemble 2 114. Agogo

51. SynthStrings 1 115. Steel Drums

52. SynthStrings 2 116. Woodblock

53. Choir Aahs 117. Taiko Drum

54. Voice Oohs 118. Melodic Tom

55. Synth Voice 119. Synth Drum

56. Orchestra Hit 120. Reverse Cymbal

57. Trumpet 121. Guitar Fret Noise

58. Trombone 122. Breath Noise

59. Tuba 123. Seashore

60. Muted Trumpet 124. Bird Tweet

61. French Horn 125. Telephone Ring

62. Brass Section 126. Helicopter
63. SynthBrass 1 127. Applause

64. SynthBrass 2 128. Gunshot

	A.2 General MIDI percussion map

	Key#
Drum Sound

Key#
Drum Sound
35
Acoustic Bass Drum

59
Ride Cymbal 2

36
Bass Drum 1

60
Hi Bongo

37
Side Stick

61
Low Bongo

38
Acoustic Snare

62
Mute Hi Conga

39
Hand Clap

63
Open Hi Conga

40
Electric Snare

64
Low Conga

41
Low Floor Tom

65
High Timbale

42
Closed Hi Hat

66
Low Timbale

43
High Floor Tom

67
High Agogo

44
Pedal Hi-Hat

68
Low Agogo

45
Low Tom

69
Cabasa

46
Open Hi-Hat

70
Maracas

47
Low-Mid Tom

71
Short Whistle

48
Hi Mid Tom

72
Long Whistle

49
Crash Cymbal 1

73
Short Guiro

50
High Tom

74
Long Guiro

51
Ride Cymbal 1

75
Claves

52
Chinese Cymbal

76
Hi Wood Block

53
Ride Bell

77
Low Wood Block

54
Tambourine

78
Mute Cuica

55
Splash Cymbal

79
Open Cuica

56
Cowbell

80
Mute Triangle

57
Crash Cymbal 2

81
Open Triangle

58
Vibraslap

	
	APPENDIX B an introduction to OpenGL

	
	OpenGL [42] is a core component of MIVI and a basic awareness and knowledge of its functions and principals is crucial in the reading of this report. This section will furnish the reader with the fundamentals of the technology. Other more advanced issues are dealt with as and when they appear throughout the report. For a more detailed and less specialised introduction to OpenGL and computer graphics, the author refers the reader to Angel [3].

 OpenGL is a cross-platform implementation of graphics libraries for the creation and manipulation of 3D and 4D objects. Following its inception, in 1992, the specification took the industry and academic body by storm and quickly established itself as the most popular standard for 3D graphics design and programming.

	compatibility
	 It is its library form that allows for its incredible compatibility - the libraries are distributed as C source code, and with minimal modifications can be compiled on any platform with a C compiler, thus covering most operating systems. Once compiled to the native format, the OS's infrastructure allows the functions and sub-routines of the library to be called from any programming language or application that supports external dependencies.

 The low-level functions and workings of the libraries are discussed in detail in Angel [3], but for our purposes, a rudimentary knowledge of the higher-level functions, employed in the host programming language, will be sufficient for the reader.

	structure
	 OpenGL has 3 main libraries – the GL (Core Library), GLU (Utility Library) and GLUT (Utility Toolkit Library). The first defines methods for creation of the simplest (atomic) 3D objects, such as individual vertices, lines and polygons, and provides functions for handling global parameters for lighting and viewport configuration, as well as functions to adjust material properties and map simple bit-mapped images (textures) to objects. Functions involving communication with the graphics hardware are generally found in this library. The second library is simply a collection of enumerated values, which map property names to internal constants, allowing for easier recognition and recollection by graphics developers. Finally, the third contains macros for creating common primitives (cubes, sphere, pyramids, etc.) and handles communication with the OS to allow for timing, user interaction, OS GUI (Graphical User Interface) settings, etc.

	matrices and
stack-based
geometry
	 To beginners, the relative nature of OpenGL's matrix geometry can be counter-intuitive, at first. OpenGL uses matrices to represent a 3D world. So, instead of telling OpenGL to create a cube at (5,5,5) and one at (8,5,5), we must tell it to move 5 right, 5 up and 5 in, from the origin, and create the first cube. Then, we only need to move a further 3 right and create the second. If we now want to create another object in relation to the origin, we must remember how to get back there. So, scene creation, in OpenGL, works on a stack-based principle.

	
fig B.1 - using the
OpenGL stack
	

[image: image21.png]
	

[image: image22.png]

	
	(a) without stack
	(b) with stack

	
	 Imagine, if you will, a cursor. When you draw a line from a to b, the cursor moves from a to b as well. Imagine if you were to draw a line 4 times sequentially, rotating 90° each time - the resulting shape would be a square (figure B.1 (a)), and in the process the cursor would have gone from a to b to c to d to a.

 However, by pushing the cursor
 onto the stack before the line is drawn, a snapshot of its location is stored for retrieval (popping) later. Now, if, after the line is drawn, we pop the stack, we return the cursor to the state we were in beforehand. Then, if we rotate 90°, and repeat as before, the result is a 'plus' shape (figure B.1 (b)) and the cursors itinerary is now a to b, then a to c, then a to d, then a to e.

	hierarchical
modelling
	 We can, of course, push to the stack more than once without popping it in between - whatever data it receives, it ‘stacks’ on top of what already exists (herein lies its etymology). This allows us to abstract from complicated models and consider them as the sum of their components, considering each component independently from the parent body, possibly even as a sum of its own components. For example, a hand is subordinate to a body, and a finger to a hand. If we push the cursor before the creation of the left arm, then execute the code for its creation, we can pop the stack, move the cursor to the left and use the same code for the other arm. Furthermore, during the drawing of each arm, we can take the same approach for each finger - the result is that fingers' positions are effected by the arm's rotation, which is how we want it. Since every finger that is pushed to the stack gets popped, when the fingers are drawn, the stack is left as it was before, with the arm's cursor next in line at the top of the stack. The use of this technique to model realistic physical interaction (such as anatomy) is called Inverse Kinematics [3], and its use its illustrated in figure B.2.

	fig. B.2 - the use of

Inverse Kinematics
	
[image: image23.png]

	
	 It is not hard to see that this approach permits for the inclusion of the best of both worlds; relative and coordinate geometry. Indeed, an interface could easily be written to allow the user to work in coordinate geometry alone. By simply pushing and popping, before and after (respectively) the creation of every object, the cursor is forced to act relative to the origin. Most graphics projects, however, are a compromise between the two - the designing of 3D bodies with independently moveable parts, for example, is made significantly simpler with a stack.

	display lists
	 Unsurprisingly, the keywords and grammar of the OpenGL programming language do not represent the final format of graphics information, as it is presented to the hardware. OpenGL interprets such high-level terminology into a more efficient form before execution. This is the case with other interpreting programming languages, like JAVA and PERL. Whereas this approach has the advantage of visibility, and can result in easier porting to other host systems, it is known to be significantly less efficient than the alternative; compiled programming languages – where the information must be converted into the final, executable code, before runtime, and is distributed in this format. In this latter case, no translation is necessary while the program is running.

 OpenGL seizes the best of both the interpretation and compilation worlds, by allowing an OpenGL program to submit 3D object code for compilation at the outset of program runtime. This code is then translated to the final, executable format and stored in memory, where the OpenGL program can beckon its direct execution. Compilation is a one-way ‘lossy’ process, so the 3D object defined by the code cannot be reverse engineered and modified. Hence, it is only of viable use in static objects, like our piano body, whose attributes and form do not change.

	 the GLUT
utility library
	 The history of computers is the story of automation to make life faster or simpler – and OpenGL's own history follows suit. There are sequences of operations in OpenGL that must be performed in nearly every application (eg. initialising hardware, initialising windows, etc.) and there are certain sequences which are common to many different software applications – such as drawing standard primitives, like cubes and spheres, etc.

 Just the initialisation can take over 100 lines of generic code. By calling a select number of GLUT functions, these lines are executed for you. Furthermore, by supplying a number of parameters to the functions, a certain degree of flexibility and control over the environment’s creation is maintained.

 The GLUT library also provides access to event handlers, so that input, from devices attached to the system – such as the keyboard – can be processed. As such, a lot of the GLUT library is reliant on the program’s host Operating System’s Hardware Abstraction Layer (HAL), and the code is thus littered with compiler directives, specifying code segments appropriate to each host OS.

 The GLUT library’s finer intricacies, including discussions of advantages and disadvantages, are covered in the relevant sections, elsewhere in the report.

	
	APPENDIX C implementation source code

	
	The following pages contain the source code for the implementation of the MIVI application, as documented in this report. The code is divided into two sections: (1) the C/C++ header file mivi.h, and (2) the C++ source file mivi.cpp.

	C.1 MIVI C/C++ header file: mivi.h

#include "audioeffectx.h"

// VST plugin library

#include "AEffEditor.hpp"

// VST editor library

#include "vstgui.h"

// VST GUI library

#include <math.h>

// standard C/C++ libraries

#include <string.h>

//

#include <stdio.h>

//

#include <windows.h>

//

#include <gl/glut.h>

// modified GLUT library

AEffect *main (audioMasterCallback audioMaster);

// DLL entry point

class MIVIInstrument;

// generic instrument class (CODE REF. 01)
MIVIInstrument* instrument;

// active instrument pointer

enum{
PIANO_MODEL_37_KEY, PIANO_MODEL_61_KEY, PIANO_MODEL_76_KEY, PIANO_MODEL_88_KEY, FLUTE_MODEL};
// instruments

enum noteMsg{

MIVI_ON,
MIVI_OFF,
INPUT_ON,

INPUT_OFF };

// tutor system messages (CODE REF. 02)
enum noteStatus{
IS_OFF,

WAIT_ON,
EARLY_ON,

LATE_ON,

// tutor system note states

IS_ON,

WAIT_OFF,
EARLY_OFF,
LATE_OFF
};

noteStatus nextStatus[][4][8] = // illegal states in brackets

// tutor system DFSA’s (CODE REF. 03)
{

{
//
IS_OFF

WAIT_ON

 EARLY_ON

LATE_ON

<< Current State

//--

{
 WAIT_ON, (WAIT_ON),
 IS_OFF,
 WAIT_ON
},
// MIVI_ON
<< MIDI Msg

{ (IS_OFF), LATE_ON, (EARLY_ON),
(LATE_ON)
},
// MIVI_OFF

{
 EARLY_ON,
IS_OFF,
 (EARLY_ON),
 IS_OFF

},
// INPUT_ON

{ (IS_OFF), (WAIT_ON),
 IS_OFF,
 (LATE_ON)
}

// INPUT_OFF

},

{
//
IS_OFF
 WAIT_ON

 EARLY_ON

 LATE_ON

IS_ON

WAIT_OFF

EARLY_OFF

LATE_OFF

<< Current State

//---

{
 WAIT_ON, (WAIT_ON),
 IS_ON,

 WAIT_ON, (IS_ON),

LATE_OFF, (EARLY_OFF),(LATE_OFF)
},
// MIVI_ON
<< MIDI Msg

{ (IS_OFF), LATE_ON, (EARLY_ON),
(LATE_ON),
WAIT_OFF, (WAIT_OFF),
IS_OFF,

WAIT_OFF
},
// MIVI_OFF

{
 EARLY_ON, IS_ON,

(EARLY_ON),
 WAIT_OFF, (IS_ON),
 (WAIT_OFF), IS_ON,
 (LATE_OFF)
},
// INPUT_ON

{ (IS_OFF), (WAIT_ON),
 IS_OFF,
 (LATE_ON),
EARLY_OFF,
IS_OFF,
 (EARLY_OFF),
WAIT_ON

}

// INPUT_OFF

}

};

int nextStatusReward[][4][8] = // illegal states in brackets

// tutor system rewards

{

{
//
IS_OFF

WAIT_ON

EARLY_ON
LATE_ON

<< Current State

//---

{
 0,

(0),

 2,

-4

},
// MiviOn
<< MIDI Msg

{
(0),

-4,

(0),

(0)

},
// MiviOff

{
-4,

 2,

(0),

 2

},
// InputOn

{
(0),

(0),

 1,

(0)

}

// InputOff

},

{
//
IS_OFF

WAIT_ON

EARLY_ON
LATE_ON

IS_ON

WAIT_OFF
EARLY_OFF
LATE_OFF
<< Current State

//---

{
 0,

(0),

 2,

-4,

(0),

-4,

(0),

(0)

},
// MiviOn
<< MIDI Msg

{
(0),

-4,

(0),

(0),

 0,

(0),

 2,

-4

},
// MiviOff

{
-4,

 2,

(0),

 2,

(0),

(0),

 1,

(0)

},
// InputOn

{
(0),

(0),

 1,

(0),

-4,

 2,

(0),

 2

}

// InputOff

}

};

typedef struct{

// ‘note’ type (CODE REF. 04)

int velocity;

noteStatus status;

} note;

note notes[256];

// ‘notes’ array

int setNextState(note *currentNote, noteMsg message);

// sets next tutor system note state

int getMonoPoly();

// monopolise polyphonic MIDI stream

bool SPIN_MODE = false;

// display modes

bool HIGHLIGHT_MODE = false;

//

bool DEPENDENT_MODE = false;

//

bool DEPRESS_MODE = false;

//

bool TUTOR_MODE = false;

// tutor system toggle

int SKILL_LEVEL = 0;

// tutor system skill level

int
 noteScore = 0;

// tutor system score variable

int
 noteCount = 0;

// tutor system max score variable

long inputChannel = 15;

// tutor system input channel (=16)

bool oome = false;

// out of memory flag

const double Pi = 3.141592653f;

// GUI variables

CBitmap *hBackground;

// background image

CParamDisplay *labelScore;

// score label

enum{

kBackground = 128,

// event / bitmap enumeration (CODE REF. 05)

kButtonSpin,

//

kArrowRight,

//

kArrowUp,

//

kArrowDown,

//

kArrowLeft,

//

kZoomOut,

//

kZoomIn,

//

kButtonHighlight,

//

kButtonReset,

//

kButtonDepress,

//

kButtonTutor,

//

kButtonSkill,

//

kButtonDependents,

//

};

/* OpenGL variables */

// (CODE REF. 06)
int rotatex = 0, rotatey = 0, rotatez = 0, zoom = 0;

// display settings

int glWindow;

// OpenGL window identifier

GLfloat glWindowX, glWindowY;

// OpenGL window size variables

bool GL_ACTIVE = false;

// OpenGL activation guard

/* OpenGL functions */

void glInit();

// local OpenGL initialiser

void glDisplay();

// OpenGL display function

void glReshape(int w, int h);

// OpenGL window reshape handler

class MIVI : public AudioEffectX

// main plugin object

{

public:

MIVI(audioMasterCallback audioMaster);

// constructor

~MIVI();

// destructor

virtual void process(float **inputs, float **outputs, long sampleframes){}

// audio processor

virtual void processReplacing(float **inputs, float **outputs, long sampleframes){} // alternative audio processor

virtual long processEvents(VstEvents* events);

// MIDI processor

virtual void setProgram(long program);

// switches instruments

virtual void setProgramName(char *name){}

// sets instrument name

virtual void getProgramName(char *name);

// returns instrument name

virtual void resume();

virtual long canDo (char* text);

// identifies plugin capabilities

};

class MIVIEdit : public MIVI

// plugin editor object

{

public:

MIVIEdit (audioMasterCallback audioMaster);

// constructor

~MIVIEdit() {}

// destructor (null – deleted by AudioEffect)

};

class MIVIEditor : public AEffGUIEditor, public CcontrolListener

// plugin interface object

{

public:

MIVIEditor (AudioEffect *effect);

// constructor

~MIVIEditor (){}

// destructor

protected:

virtual long open (void *ptr);

// draws interface

virtual void close ();

// called when editor closed

virtual void idle();

// called regularly by host

virtual void valueChanged (CDrawContext* context, CControl* control);

// interface event handler

};

class MIVIInstrument

// generic instrument class (CODE REF. 07)
{

friend class MIVI;

public:

MIVIInstrument () {}

// constructor

~MIVIInstrument () {}

// destructor

int defaultGMvoice;

// instrument’s associated General MIDI voice

char name[24];

// instrument’s name

virtual void init(int instrumentRange,int baseOctave,int basePitch)

// initialisation procedure

{range=instrumentRange;octave=baseOctave;pitch=basePitch;}

virtual void reinit(){body = 0;}

// re-initialisation procedure (updates gfx)

virtual void draw(){}

// interface to instrument’s draw function

protected:

MIVIInstrument *instrument;

// pointer to object

int range;

// number of notes in dynamic range

int octave;

// instrument’s base octave

int pitch;

// instrument’s base pitch (relative to octave)

GLuint body;

// identifies OpenGL list for instrument body

virtual void initBody(){}

// interface to instrument’s body compiler

};

class miviPIANO : public MIVIInstrument

// MIVIInstrument piano subclass (CODE REF. 08)
{

public:

miviPIANO (int instrumentRange, int baseOctave, int basePitch);

// constructor

~miviPIANO () {}

// destructor

void draw();

// draws piano

private:

void initBody();

// compiles piano’s body

void drawKeyboard();

// draws piano’s keyboard

float keyboardWidth;

// width of keyboard

float getKeyboardWidth();

// calculates width of keyboard

};

class miviFLUTE : public MIVIInstrument

// MIVIInstrument flute subclass (CODE REF. 09)
{

public:

miviFLUTE (int instrumentRange, int baseOctave, int basePitch);

// constructor

~miviFLUTE () {}

// destructor

void draw();

// draws flute

private:

enum dirType {FORWARDS = 1, BACKWARDS = -1};

// direction enumerator (CODE REF. 10)

enum keyType {NO_KEY, ROUND_KEY, DRIP_KEY};

// flute key types (CODE REF. 11)

typedef struct{

// flute rod data type (CODE REF. 12)

float
vOffset;

// vertical offset

float
length;

// rod length

float
pOffset;

// polar offset

} fluteRod;

typedef struct{

// flute key data type (CODE REF. 13)

float
vOffset;

// vertical offset

keyType
type;

// key type [NO_KEY(default),ROUND_KEY,DRIP_KEY]

dirType
direction;
// direction [FORWARDS,BACKWARDS]

float
data1;

// drip key: angle; round key: size

float
data2;

// drip key: offset

float
data3;

// drip key: length

int

finger;

// corresponding finger in fingerings[][finger][]

int

parent[3];

// closed when fingerings[][parent][] = 1

} fluteKey;

typedef struct{

// fingering identifier (CODE REF. 14)

int bank;

int note;

} fingering;

fingering currentFingering;

// identifies current fingering

void initBody();

// compiles flute body

void drawKeyMechanism();

// draws flute key mechanism

void drawTube(float length, float curve); // curvature in % (1.0 = 100%)

// OpenGL shape macros

void drawRib();

//

};
	C.2 MIVI C++ source file: mivi.cpp

#include "mivi.h"

AEffect *main (audioMasterCallback audioMaster)

// main DLL entry point (CODE REF. 15)
{

if(!audioMaster (0, audioMasterVersion, 0, 0, 0, 0))

// terminate, if old version of VST Host

return 0;

AudioEffect* effect = new MIVIEdit (audioMaster);

// attempt plugin construction

if (!effect)

// terminate, if construction failed

return 0;

if (oome)

// terminate, if out of memory

{

delete effect;

return 0;

}

return effect->getAeffect ();

// notify VST of successful initialisation

}

void* hInstance;

BOOL WINAPI DllMain (HINSTANCE hInst, DWORD dwReason, LPVOID lpvReserved)
// returns Win32 handle

{

hInstance = hInst;

return 1;

}

void resetMIDI(){

// reset note status / velocity (CODE REF. 16)

for(int i=0; i<256; i++){

notes[i].status = IS_OFF;

notes[i].velocity = 0;

}

}

void resetMIVI(){

// reset MIDI / display settings (CODE REF. 17)

resetMIDI();

rotatex = rotatey = rotatez = zoom = 0;

instrument->reinit();

}

MIVI::MIVI(audioMasterCallback audioMaster)

// main plugin constructor (CODE REF. 18)
: AudioEffectX (audioMaster, 5, 0)

// creates plugin with 5 instruments(programs)

{

if (audioMaster)

{

setNumInputs (0);

// no inputs

setNumOutputs (0);

// no outputs

isSynth ();

// identify as (MIDI-capable) Synth

setUniqueID ('MIVI');

}

suspend ();

}

MIVI::~MIVI ()
// main plugin destructor

{

if(instrument)

delete instrument;

// delete old instrument (if one exists)

}

void MIVI::setProgram (long program)
// sets active program (instrument) (CODE REF. 19)
{

AudioEffect::curProgram = program;

// tell VST the current program index

if(instrument)

delete instrument;

// delete old instrument (if one exists)

switch(curProgram){

// construct desired new instrument

case PIANO_MODEL_37_KEY:
instrument = new miviPIANO(37,2,0);

break;

case PIANO_MODEL_61_KEY:
instrument = new miviPIANO(61,1,0);

break;

case PIANO_MODEL_76_KEY:
instrument = new miviPIANO(76,0,9);

break;

case PIANO_MODEL_88_KEY:
instrument = new miviPIANO(88,0,9);

break;

case FLUTE_MODEL:

instrument = new miviFLUTE(0,4,0);

break;

}

if(GL_ACTIVE)

glutPostRedisplay();

// request graphics update

}

void MIVI::getProgramName (char *name) // tells VST the program (instrument) names (CODE REF. 20)
{

strcpy (name, instrument->name);

// extract instrument name

}

long MIVI::canDo (char* text)
 // tells VST our plugin competences: (CODE REF. 21)
{

if (!strcmp (text, "receiveVstEvents"))

return 1;

// (required for receiveVstMidiEvent)

if (!strcmp (text, "receiveVstMidiEvent"))

return 1;

// handles (and requires) MIDI messages

if (!strcmp (text, "receiveVstTimeInfo"))

return 1;

// handles (and requires) playback time info

return -1;

// explicitly can't do; 0 => don't know

}

MIVIEdit::MIVIEdit (audioMasterCallback audioMaster)

// plugin constructor (CODE REF. 22)
: MIVI (audioMaster)

// (calls main constructor)

{

setUniqueID ('MIVI');

editor = new MIVIEditor (this);

// construct interface

setProgram (PIANO_MODEL_88_KEY);

// initialise full-size piano as default

if (!editor)

oome = true;

// out of memory if failed

}

MIVIEditor::MIVIEditor (AudioEffect *effect)
// interface constructor

: AEffGUIEditor (effect)

// (uses VSTGUI library for interface controls)

{

effect->setEditor(this);

// connect interface to plugin

}

void MIVIEditor::idle()

// called regularly by host (when idle) (CODE REF. 23)
{

if(GL_ACTIVE == true){

if(SPIN_MODE == true){

rotatex = rotatey = rotatez += 1 ;

// rotate, if in SPIN mode

glutPostRedisplay();

// request graphics update

}

if(noteCount != 0)

// prevent divide by zero

labelScore->setValue((float)noteScore / noteCount * 100.0);

// display tutor system score

// ((float) forces rational result)

glutMainLoopUpdate();

// transfer control to GLUT (temporarily)

// (to update graphics and handle events)

}

AEffGUIEditor::idle();

// execute default idle code

}

long MIVIEditor::open (void *ptr)

// builds interface window (CODE REF. 24)
{

AEffGUIEditor::open (ptr);

// execute default VST open code

hBackground
= new CBitmap(kBackground);

// load Bitmaps for interface controls

rect.left = 0;

// dimension interface window

rect.top = 0;

//

rect.right = (short)hBackground->getWidth();

//

rect.bottom = (short)hBackground->getHeight();

//

CRect size (0, 0, hBackground->getWidth (), hBackground->getHeight ());

// background

frame = new CFrame (size, ptr, this);

frame->setBackground (hBackground);

typedef struct{

int left;
int top;

} coords;

coords buttons[] = {{0,25},

// spin button = 129
(CODE REF. 25)

{50,125},

// arrow right

{25,100},

// arrow up

{25,125},

// arrow down

{0,125},

// arrow left

{100,125},

// zoom out

{100,100},

// zoom in

{0,50},

// highlight

{50,25},

// reset

{100,50},

// depress

{50,0},

// tutor

{100,0},

// skill

{50,50}};

// dependents

const int BUTTON_COUNT = sizeof(buttons) / sizeof(buttons[0]);

CBitmap* tmpBitmap;

COnOffButton* tmpButton;

for(int i=0; i<BUTTON_COUNT; i++){

tmpBitmap = new CBitmap(i + 129);

size (buttons[i].left, buttons[i].top, buttons[i].left + tmpBitmap->getWidth(), buttons[i].top + tmpBitmap->getHeight()/2);

tmpButton = new COnOffButton(size, this, i + 129, tmpBitmap);

frame->addView(tmpButton);

}

// tutor system display

size (0, 0, tmpBitmap->getWidth(), 20);

// all buttons are same size

labelScore = new CParamDisplay (size, 0, kCenterText);

labelScore->setFont (kNormalFontSmall);

labelScore->setFontColor (kWhiteCColor);

labelScore->setBackColor (kBlackCColor);

labelScore->setFrameColor (kRedCColor);

labelScore->setValue (0);

frame->addView (labelScore);

glWindowX = 600;

// OpenGL environment settings: (CODE REF. 26)
 glWindowY = 400;

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

// initialise OpenGL environment

glWindow = glutCreateMiviWindow((HWND)ptr, 100, 100, glWindowX, glWindowY);

// create OpenGL window

glInit();

// local OpenGL initialisation

glutDisplayFunc(glDisplay);

// attach display handler

glutReshapeFunc(glReshape);

// attach reshape handler

GL_ACTIVE = true;

// enable MIVI OpenGL operations

instrument->reinit();

return true;

}

void MIVIEditor::close ()

// called by host when editor is closed (CODE REF. 27)
{

if(GL_ACTIVE == true){

GL_ACTIVE = false;

glutDestroyWindow(glWindow);

// if active, destroy OpenGL window

}

}

void glInit()

// set parameters for OpenGL graphics rendering (CODE REF. 28)
{

 glShadeModel(GL_SMOOTH);

// enable shading

 glClearColor(0.0, 0.0, 0.5, 0.0) ;

// set background colour (blue)

 glClearDepth(1.0f);

// clear depth buffer

 glEnable(GL_DEPTH_TEST);

// enable automatic depth sorting

 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);

// slight, but unnoticeable performance hit

 glEnable(GL_LIGHTING) ;

// enable lighting

 glEnable(GL_LIGHT0);

// insert default OpenGL light

}

void glDisplay(void)
// called by GLUT - repaints the screen graphics (CODE REF. 29)
{

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// clear previous scene's buffers

 glViewport(0, 0, glWindowX, glWindowY);

// dimension OpenGL screen real estate

 glMatrixMode(GL_PROJECTION);

// set focus to projection matrix

 glLoadIdentity();

// load default matrix

 gluPerspective(45.0, glWindowX / glWindowY, 1.0, 100 - zoom);

// adjust matrix for perspective viewing

 glMatrixMode(GL_MODELVIEW);

// set focus to modelling matrix

 glLoadIdentity();

// load default matrix

 glTranslatef(0.0,0.0, (zoom - 100) / 2);

// apply zoom

 glRotatef(rotatez,0.0,0.0,1.0) ;

// rotate scene

 glRotatef(rotatey,0.0,1.0,0.0) ;

//

 glRotatef(rotatex,1.0,0.0,0.0) ;

//

 instrument->draw();

// draw active instrument

 glFlush();

// flush workings buffers

 glutSwapBuffers();

// double buffering - swap to other buffer

}

void glReshape(int w, int h)
// called when window is resized by user

{

 glWindowX = w;

// record new dimensions for use in glDisplay()

 glWindowY = h;

//

}

void MIVI::resume ()
// called when interface is made visible

{

wantEvents ();

}

long MIVI::processEvents (VstEvents* ev)
// receives and processes MIDI messages from host (CODE REF. 30)
{

int TUTOR_IN = 0;

VstTimeInfo *timeInfo = getTimeInfo(kVstTransportChanged);

// get transport bar status

if(timeInfo->flags & kVstTransportChanged)

resetMIDI();

// if changed (eg. stopped), reset MIDI

for (long i = 0; i < ev->numEvents; i++)

{

if ((ev->events[i])->type != kVstMidiType) continue;

// skip non-MIDI events

VstMidiEvent* event = (VstMidiEvent*)ev->events[i];

// extract current event

char* midiData = event->midiData;

// extract current event's MIDI message

long channel = midiData[0] & 0x0f;

// first byte - MIDI channel

long status = midiData[0] & 0xf0;

// first byte - MIDI status

long note = midiData[1] & 0x7f;

// second byte - pitch (if NoteOn/NoteOff)

long velocity = midiData[2] & 0x7f;

// third byte - velocity (if NoteOn/NoteOff)

if(channel == inputChannel){

TUTOR_IN = 1;

// event arriving from user-input

}else

TUTOR_IN = 0;

// event arriving from host

if(note>=12){

if((status == 0x90) && (velocity > 0)) {

// note on (with non-zero velocity)

notes[note - 12].velocity = velocity;

// set velocity

if(TUTOR_MODE)

// if tutoring, set next state and add score

noteScore += setNextState(¬es[note - 12], (noteMsg)(2 * TUTOR_IN));

}

if((status == 0x80) || ((status == 0x90) && (velocity == 0))) {

// note off (or note on with zero velocity)

notes[note - 12].velocity = 0;

// set null velocity

if(TUTOR_MODE)

// if tutor, set state and add score

noteScore += setNextState(¬es[note - 12], (noteMsg)(2 * TUTOR_IN + 1));

}

event++;

// move to next event

}

}

if(GL_ACTIVE)

glutPostRedisplay();

// post graphics update

return 1;

// request further events

}

int setNextState(note *currentNote, noteMsg message)
// sets next status, based on input (CODE REF. 31)
{

switch(SKILL_LEVEL){

// increment max score (dependent of skill)

case 1:

// expert: check NoteOn's and NoteOff's

if(message == MIVI_OFF)

noteCount += nextStatusReward[SKILL_LEVEL][INPUT_OFF][WAIT_OFF];

// increment by max available points

case 0:

// beginner: check NoteOn's only

if(message == MIVI_ON)

noteCount += nextStatusReward[SKILL_LEVEL][INPUT_ON][WAIT_ON];

// increment by max available points

}

noteStatus oldState = currentNote->status;

// preserve previous state

currentNote->status = nextStatus[SKILL_LEVEL][message][currentNote->status];

// set new state

return nextStatusReward[SKILL_LEVEL][message][oldState];

// return score for state transition

}

int getMonoPoly(int baseNote)

// monopolises polyphonic input (CODE REF. 32)
{

for(int k = 38 + baseNote; k >= baseNote; k--){

// find current note and set note for fingering

if(notes[k].velocity > 0)

//

return k - baseNote + 1;

//

}

return 0;

// if none, return 0;

}

void MIVIEditor::valueChanged (CDrawContext* context, CControl* control)

// processes interface input (CODE REF. 33)
{

long tag = control->getTag ();

// extract ID of selected control

switch(tag){

case kArrowUp:

rotatex -= 10;

break;

// rotation buttons

case kArrowDown:

rotatex += 10;

break;

//

case kArrowLeft:

rotatey += 10;

break;

//

case kArrowRight:

rotatey -= 10;

break;

//

case kZoomIn:

zoom += 10;

break;

// zoom buttons

case kZoomOut:

zoom -= 10;

break;

//

case kButtonSpin:

SPIN_MODE = !SPIN_MODE;

break;

// toggle spin mode

case kButtonHighlight:
HIGHLIGHT_MODE = !HIGHLIGHT_MODE;

break;

// toggle highlight mode

case kButtonDependents:
DEPENDENT_MODE = !DEPENDENT_MODE;

break;

// toggle dependent mode

case kButtonDepress:

DEPRESS_MODE = !DEPRESS_MODE;

break;

// toggle depress mode

case kButtonReset:

resetMIVI();

break;

// reset plugin

case kButtonTutor:

TUTOR_MODE = !TUTOR_MODE;

// toggle tutor mode

noteScore = noteCount = 0;

// - reset score

resetMIDI();

break;

// reset MIDI

case kButtonSkill:

// set tutor skill level

switch(SKILL_LEVEL){

case 0:

SKILL_LEVEL = 1;

break;

case 1:

SKILL_LEVEL = 0;

break;

}

break;

}

if(GL_ACTIVE)

glutPostRedisplay();

// post graphics update

}

miviPIANO::miviPIANO(int instrumentRange, int baseOctave, int basePitch)
// piano instrument constructor (CODE REF. 34)
{

MIVIInstrument::init(instrumentRange, baseOctave, basePitch);

// call default instrument initialisation code

defaultGMvoice = 1;

// MIDI GM Voice #1 = "Acoustic Grand Piano"

sprintf(name, "Piano (%d keys)", instrumentRange);

// set instrument name

keyboardWidth = getKeyboardWidth();

// pre-fetch keyboard width

body = 0;

// post update for piano body compilation

}

void miviPIANO::draw()

// draws piano (CODE REF. 35)
{

if(body==0)

initBody();

// compile piano body (if required)

glCallList(body);

// draw pre-compiled piano body

drawKeyboard();

// compile and draw piano keys

}

float miviPIANO::getKeyboardWidth()

// calculates keyboard width (CODE REF. 36)
{

int i, j, currentKey, keyboardRange;

float width = 0.0;

currentKey = (octave * 12) + pitch;

// set offset of fundamental note

keyboardRange = range + currentKey;

// match range with notes’ subscripts

int nearestWhite[] = {0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6};

// returns closest white note, given black

for(i=0;;i++){

// iterate through keyboard's octaves

for(j=0;j<7;j++){

// iterate through octave's keys

if(i==0&&j==0) j=nearestWhite[pitch];

// set offset of first note (to closest white);

// white key

currentKey++;

width+=1.0;

// add width of white key to returned value

if(currentKey==keyboardRange) break;

// exit inner loop if enough keys added

// black key

if(!(j==2||j==6)){

// distribute black notes correctly

currentKey++;

// = black key

if(currentKey==keyboardRange) break;

// exit inner loop if enough keys added

}

}

if(currentKey==keyboardRange) break;

// exit outer loop if enough keys added

}

return width;

// return total width

}

void miviPIANO::initBody()

// compiles piano body graphics (CODE REF. 37)
{

GLfloat piano_wood_diff_and_amb[]= {0.1, 0.1, 0.1, 1.0};

// specify body material

GLfloat piano_wood_spec[] = {0.5, 0.5, 0.5, 1.5};

//

GLfloat piano_wood_shininess = 5;

//

body = glGenLists(1);

// declare list

if(body!=0){

glNewList(body, GL_COMPILE);

// initialise list

glEnable(GL_NORMALIZE);

// delegate handling of normals to OpenGL

glPushMatrix();

glMaterialfv(GL_FRONT, GL_SPECULAR, piano_wood_spec);

// set body material

glMaterialf(GL_FRONT, GL_SHININESS, piano_wood_shininess);

//

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, piano_wood_diff_and_amb);
//

glScalef(1.2 * (keyboardWidth + 4),10.0,2.0);

// scale and draw base

glutSolidCube(1.0);

//

glTranslatef(0.0,0.5,0.5);

// position, scale and draw head

glScalef(1.0,0.35,2.0);

//

glutSolidCube(1.0);

//

glPopMatrix();

for(int i=0;i<2;i++){

// for each end, position, scale and draw rib

glPushMatrix();

glTranslatef((-1.2 + (i * 2.4)) * (keyboardWidth / 2 + 1), 0.0, 1.0);

glScalef(2.4, 6.5, 2.0);

glutSolidCube(1.0);

glPopMatrix();

}

glDisable(GL_NORMALIZE);

// end automatic handling of normals

glEndList();

// finalise list

}

}

void miviPIANO::drawKeyboard()

// draws keyboard (CODE REF. 38)
{

 int i, j, currentKey, keyboardRange;

int nearestWhite[] = {0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6};

// return closest white note, given black

currentKey = (octave * 12) + pitch;

// set offset of fundamental note

keyboardRange = range + currentKey;

// match dynamic range with notes’ subscripts

GLfloat white_keys_diff_and_amb[]= {0.6, 0.6, 0.6, 1.0};

// specify white key material

GLfloat white_keys_spec[] = {0.8, 0.8, 0.8, 1.0};

//

GLfloat white_keys_shininess = 5;

//

GLfloat black_keys_diff_and_amb[]= {0.0, 0.0, 0.0, 1.0};

// specify black ket material

GLfloat black_keys_spec[] = {0.6, 0.6, 0.6, 1.0};

//

GLfloat black_keys_shininess = 50;

//

GLfloat red_highlight[] = {1.0, 0.0, 0.0, 1.0};

// specify highlight material

GLfloat green_highlight[] = {0.0, 1.0, 0.0, 1.0};

// specify alternative highlight material

glTranslatef(-1.2 * keyboardWidth / 2, 0.0, 1.5);

// move from centre to leftmost point

glPushMatrix() ;

glEnable(GL_NORMALIZE);

// delegate handling of normals to OpenGL

glScalef(0.1,0.65,0.1);

// apply global scaling to all keys

glTranslatef(6.0,0.0,0.0);

// move to first key

for(i=0;;i++){

// iterate through keyboard's octaves

for(j=0;j<7;j++){

// iterate through octave's keys

if(i==0&&j==0) j=nearestWhite[pitch];

// set offset of first note (to closest white)

// white keys

glMaterialfv(GL_FRONT, GL_SPECULAR, white_keys_spec);

// set white key material

glMaterialf(GL_FRONT, GL_SHININESS, white_keys_shininess);

//

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, white_keys_diff_and_amb);
//

glPushMatrix();

if(TUTOR_MODE){

// if tutor mode, set gfx mode: (CODE REF. 39)

switch(notes[currentKey].status){

//

case WAIT_ON:

//
-> green when expecting input

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, green_highlight);

//
-> red when late or in error

case IS_ON:

//
-> depress when so in host's music

glTranslatef(0.0, 0.0, -6.0);

//

break;

//

case WAIT_OFF:

//

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, green_highlight);

//

break;

//

case EARLY_OFF:

//

case LATE_OFF:

//

glTranslatef(0.0, 0.0, -6.0);

//

case EARLY_ON:

//

case LATE_ON:

//

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, red_highlight);

//

break;

//

}

}else{

// if default mode and if note active:

if(notes[currentKey].velocity > 0){

//

if(HIGHLIGHT_MODE)

// -> highlight, if highlight mode on

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, red_highlight);

// -> depress, if depress mode on

if(DEPRESS_MODE)

//

glTranslatef(0.0, 0.0, -6.0);

//

}

//

}

glutSolidCube(10.0);

// draw key

currentKey++;

// increment key counter

glPopMatrix();

if(currentKey==keyboardRange) break;

// exit inner loop if enough keys added

// black keys

if(!(j==2||j==6)){

// distribute black notes correctly

glMaterialfv(GL_FRONT, GL_SPECULAR, black_keys_spec);

// set black key material

glMaterialf(GL_FRONT, GL_SHININESS, black_keys_shininess);

//

glMaterialfv(GL_FRONT,GL_AMBIENT_AND_DIFFUSE,black_keys_diff_and_amb);
//

glPushMatrix();

glTranslatef(6.0, 1.75, 7.0);

// move to black note

if(TUTOR_MODE){

// if tutor mode, set gfx mode:

switch(notes[currentKey].status){

//

case WAIT_ON:

//
-> green when expecting input

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, green_highlight);
// -> red when late or in error

case IS_ON:

// -> depress when so in host's music

glTranslatef(0.0, 0.0, -4.0);

//

break;

//

case WAIT_OFF:

//

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, green_highlight);
//

break;

//

case EARLY_ON:

//

case LATE_ON:

//

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, red_highlight);

//

break;

//

case EARLY_OFF:

//

case LATE_OFF:

//

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, red_highlight);

//

glTranslatef(0.0, 0.0, -4.0);

//

break;

//

}

}else{

// if default mode and if note active:

if(notes[currentKey].velocity > 0){

//

if(HIGHLIGHT_MODE)

// -> highlight, if highlight mode on

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, red_highlight);
// -> depress, if depress mode on

if(DEPRESS_MODE)

//

glTranslatef(0.0, 0.0, -4.0);

//

}

//

}

glutSolidCube(6.5);

// draw key

currentKey++;

// increment key counter

glPopMatrix();

if(currentKey==keyboardRange) break;

// exit inner loop if enough keys added

}

glTranslatef(12.0,0.0,0.0);

// move to next key

}

if(currentKey==keyboardRange) break;

// exit outer loop if enough keys added

}

glDisable(GL_NORMALIZE);

// end automatic handling of normals

glPopMatrix() ;

}

// The following flute implementation is based on the

// specifications of T.Boehm's Flute as documented

// in his 1908 book, 'The Flute and Flute-Playing', without

// the conventional Briccialdi Bb thumb lever.

//

// Comments and numerals correlate to those mentioned

// in the text.

miviFLUTE::miviFLUTE(int instrumentRange, int baseOctave, int basePitch)

// flute instrument constructor (CODE REF. 40)
{

MIVIInstrument::init(instrumentRange, baseOctave, basePitch);

// call default instrument initialisation code

defaultGMvoice = 74;

// MIDI GM Voice #74 = "Flute"

strcpy(name, "Flute");

// set instrument name

currentFingering.bank = 0;

// set fingering to initial (null) values

currentFingering.note = 0;

//

body = 0;

// post update for flute body compilation

}

void miviFLUTE::draw()

// draws flute (CODE REF. 41)
{

if(body==0)

initBody();

// compile flute body (if required)

glCallList(body);

// draw pre-compiled flute body

drawKeyMechanism();

// compile and draw flute keys

}

void miviFLUTE::initBody()

// compiles flute body (CODE REF. 42)
{

GLfloat flute_diff_and_amb[] = {0.6, 0.6, 0.6, 1.0};

// specify flute material

GLfloat flute_spec[] = {1.0, 1.0, 1.0, 1.0};

//

GLfloat flute_shininess = 5;

//

GLfloat flute_aperture[] = {0.0, 0.0, 0.0, 1.0};

// specify flute aperture material

body = glGenLists(1);

// declare list

if(body!=0){

glNewList(body, GL_COMPILE);

glMaterialfv(GL_FRONT, GL_SPECULAR, flute_spec);

// set flute material

glMaterialf(GL_FRONT, GL_SHININESS, flute_shininess);

//

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, flute_diff_and_amb);

//

glRotatef(90.0, 0.0, 0.0, 1.0);

// display flute horizontally

drawTube(35.0, 0.01);

// draw main body

glPushMatrix();

glTranslatef(0.0, -10.375, 0.0);
drawRib();

// draw three ribs

glTranslatef(0.0, 15.625, 0.0);

drawRib();

//

glTranslatef(0.0, 2.5, 0.0);

drawRib();

//

glTranslatef(0.0, 5.825, 0.0);

// position, rotate, scale and draw embrochure

glRotatef(22.5, 0.0, 1.0, 0.0);

//

glTranslatef(0.0, 0.0, 0.2);

//

glScalef(0.9, 0.06, 1.0);

//

drawTube(35.0, 0.75);

//

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, flute_aperture);

// set aperture material

glMaterialfv(GL_FRONT, GL_SPECULAR, flute_aperture);

//

glTranslatef(0.0, 0.0, 0.22);

// position, scale and draw aperture

glScalef(0.6, 0.3, 0.8);

//

drawTube(35.0, 3.0);

//

glPopMatrix();

glEndList();

}

}

void miviFLUTE::drawKeyMechanism()
// draws flute keys

{

GLfloat flute_diff_and_amb[] = {0.6, 0.6, 0.6, 1.0};

// specify flute material

GLfloat flute_spec[] = {1.0, 1.0, 1.0, 1.0};

//

GLfloat flute_shininess = 5;

//

GLfloat highlight[] = {1.0, 0.0, 0.0, 1.0};

// specify highlight material

GLfloat half_highlight[] = {1.0, 0.6, 0.6, 1.0};

// specify alternative highlight material

const int MAX_KEYS = 9;

// set maximum number of keys per rod

const int KEY_COUNT = 13;

// set number of fingerable keys

bool noteOn[2];

fingering oldFingering;

static fluteRod rods[] =

// set rods' specifications (CODE REF. 43)

{//
vOffset
length
pOffset

{0.75,
5.25,
45.0},

// rod A

{7.0,
12.75,
0.0},

// rod B

{12.5,
2.25,
25.0},

// rod C

{8.0,
13.75,
-25.0},

// rod D

{16.2,
1.125,
-45.0}
// rod E (Bb lever)

};

static fluteKey keys[][MAX_KEYS] =

// set keys' specifications (CODE REF. 44)

{//
vOffset
type

direction

data1
..2

..3
finger
parents

{
// (rod A)

{0.5,

ROUND_KEY,
BACKWARDS,
6.0,
0.0,
0.0,
0,

11,0,0},
// I

C#

{2.5,

ROUND_KEY,
BACKWARDS,
6.0,
0.0,
0.0,
0,

10,0,0},
// II

D

{3.5,

DRIP_KEY,

BACKWARDS,
90.0,
0.2,
0.25,
11,

0,0,0},

//

C

{3.5,

DRIP_KEY,

BACKWARDS,
90.0,
0.2,
0.75,
10,

0,0,0},

//

C#

{3.75,
ROUND_KEY,
FORWARDS,

0.0,
0.0,
0.0,
0,

9,0,0},

// III
D#

{4.5,

DRIP_KEY,

BACKWARDS,
0.0,
0.2,
0.5,
9,

0,0,0}

//

D#

},{
// (rod B)

{0.5,

ROUND_KEY,
FORWARDS,

6.0,
0.0,
0.0,
8,

0,0,0},

// IV

E

{1.875, ROUND_KEY,
FORWARDS,

6.0,
0.0,
0.0,
7,

0,0,0},

// V

F

{3.25,
ROUND_KEY,
FORWARDS,

6.0,
0.0,
0.0,
6,

0,0,0},

// VI

F#

{4.625,
ROUND_KEY,
FORWARDS,

6.0,
0.0,
0.0,
0,

6,7,8},

// VII
G

{8.5,

ROUND_KEY,
FORWARDS,

6.0,
0.0,
0.0,
3,

0,0,0},

// X

A#

{9.75,
ROUND_KEY,
FORWARDS,

6.0,
0.0,
0.0,
0,

3,6,0},

// XI

B

{10.75,
ROUND_KEY,
BACKWARDS,
6.0,
0.0,
0.0,
2,

0,0,0},

// XII
C

{10.75, ROUND_KEY,
FORWARDS,

4.0,
0.0,
0.0,
1,

0,0,0},

//

C#

{12.5,
ROUND_KEY,
FORWARDS,

4.0,
0.0,
0.0,
0,

1,0,0}

// XIII
C#

},{
// (rod C)

{0.5,

ROUND_KEY,
FORWARDS,

6.0,
0.0,
0.0,
0,

5,0,0},

// VIII
G#

{1.125,
DRIP_KEY,

FORWARDS,

67.5,
0.2,
1.5,
5,

0,0,0},

//

G#

{1.75,
ROUND_KEY,
FORWARDS,

6.0,
0.0,
0.0,
4,

0,0,0}

// IX

A

},{
// (rod D)

{0.25,
DRIP_KEY,

FORWARDS,

4.0,
0.0,
1.5,
13,

0,0,0},

//

D#

{1.625,
DRIP_KEY,

FORWARDS,

4.0,
0.0,
1.5,
12,

0,0,0},

//

D

{12.5,
ROUND_KEY,
BACKWARDS,
4.0,
0.0,
0.0,
0,

12,0,0},
// XIV
D

{13.5,
ROUND_KEY,
BACKWARDS,
4.0,
0.0,
0.0,
0,

13,0,0}

// XV

D#

},{
// (rod E)

{0.55,
DRIP_KEY,

BACKWARDS,
-67.5,0.2,
0.5,
0,

0,0,0}

//

Bb (inactive)

}};

// set possible fingerings (2 BANKs over KEY_COUNT(+alternate flag) keys for 38(39-default) FINGERINGs) (CODE REF. 45)

static int fingerings[2][KEY_COUNT+1][39] =

{{//def
C C# D D# E F F# G G# A

A# B C C# D D# E F F# G G# A A# B

C C# D D# E F F# G G# A A# B C C#

{0,
1,1, 1,1, 1,1,1, 1,1, 1,
1, 1,1,0, 0,0, 1,1,1, 1,1, 1,1, 1,
1,0, 0,1, 1,1,1, 1,0, 0,0, 1,1,1},
// 1st finger

{0,
1,1, 1,1, 1,1,1, 1,1, 1,
1, 1,0,0, 1,1, 1,1,1, 1,1, 1,1, 1,
0,0, 1,1, 1,1,1, 0,0, 1,1, 1,0,0},
// thumb

{0,
1,1, 1,1, 1,1,1, 1,1, 1,
0, 0,0,0, 1,1, 1,1,1, 1,1, 1,0, 0,
0,0, 1,1, 1,0,0, 1,1, 1,0, 0,1,1},
// 2nd finger

{0,
1,1, 1,1, 1,1,1, 1,1, 0,
0, 0,0,0, 1,1, 1,1,1, 1,1, 0,0, 0,
0,0, 1,1, 0,1,1, 1,1, 0,0, 1,1,0},
// 3rd finger

{0,
1,1, 1,1, 1,1,1, 1,0, 0,
0, 0,0,0, 1,1, 1,1,1, 1,0, 0,0, 0,
0,0, 1,0, 1,1,1, 1,0, 0,0, 1,0,0},
// 4th finger

//

 -
- - - - - - - - - -

- - - - - - - - - - - - - -

- - - - - - - - - - - - - -

{0,
1,1, 1,1, 1,1,0, 0,0, 0,
1, 0,0,1, 1,1, 1,1,0, 0,0, 0,1, 0,
0,0, 0,1, 1,1,0, 0,0, 1,1, 0,1,1},
// 1st finger

{0,
1,1, 1,1, 1,0,0, 0,0, 0,
0, 0,0,1, 1,1, 1,0,0, 0,0, 0,0, 0,
0,0, 0,1, 1,0,0, 0,0, 0,0, 0,0,0},
// 2nd finger

{0,
1,1, 1,1, 0,0,1, 0,0, 0,
0, 0,0,1, 1,1, 0,0,1, 0,0, 0,0, 0,
0,0, 0,1, 0,0,1, 0,0, 0,0, 0,1,1},
// 3rd finger

//

 -
- - - - - - - - - -
- - - - - - - - - - - - - -

- - - - - - - - - - - - - -

{0,
1,1, 1,0, 0,0,0, 0,0, 0,
0, 0,0,0, 1,0, 0,0,0, 0,0, 0,0, 0,
0,0, 0,0, 0,0,0, 0,0, 0,1, 1,1,1},
// 4th finger

{0,
1,1, 0,0, 0,0,0, 0,0, 0,
0, 0,0,0, 0,0, 0,0,0, 0,0, 0,0, 0,
0,0, 0,0, 0,0,0, 0,0, 0,0, 0,1,1},
// 4th finger (4a)

{0,
1,0, 0,0, 0,0,0, 0,0, 0,
0, 0,0,0, 0,0, 0,0,0, 0,0, 0,0, 0,
0,0, 0,0, 0,0,0, 0,0, 0,0, 0,1,1},
// 4th finger (4b)

//

 -
- - - - - - - - - -
- - - - - - - - - - - - - -

- - - - - - - - - - - - - -

{0,
0,0, 0,0, 0,0,0, 0,0, 0,
0, 0,0,0, 0,0, 0,0,0, 0,0, 0,0, 0,
0,0, 0,0, 0,0,0, 0,0, 0,1, 0,0,0},
// D

{0,
0,0, 0,0, 0,0,0, 0,0, 0,
0, 0,0,0, 0,0, 0,0,0, 0,0, 0,0, 0,
0,0, 0,0, 0,0,0, 0,0, 0,0, 1,0,0},
// D#(Cb)

{0, 0,0, 0,0, 0,0,1, 0,0, 0,
0, 0,0,1, 0,0, 0,0,1, 0,0, 0,0, 0,
1,1, 0,0, 0,0,1, 0,1, 1,0, 0,0,0}

// alternate flag

},{

{0, 0,0, 0,0, 0,0,1, 0,0, 0,
0, 0,0,0, 0,0, 0,0,1, 0,0, 0,0, 0,
1,0, 0,0, 0,0,1, 0,0, 0,0, 0,0,0},

{0, 0,0, 0,0, 0,0,1, 0,0, 0,
0, 0,0,0, 0,0, 0,0,1, 0,0, 0,0, 0,
0,1, 0,0, 0,0,1, 0,0, 1,0, 0,0,0},

{0, 0,0, 0,0, 0,0,1, 0,0, 0,
0, 0,0,0, 0,0, 0,0,1, 0,0, 0,0, 0,
1,1, 0,0, 0,0,0, 0,1, 1,0, 0,0,0},

{0, 0,0, 0,0, 0,0,1, 0,0, 0,
0, 0,0,0, 0,0, 0,0,1, 0,0, 0,0, 0,
1,1, 0,0, 0,0,1, 0,1, 0,0, 0,0,0},

{0, 0,0, 0,0, 0,0,1, 0,0, 0,
0, 0,0,0, 0,0, 0,0,1, 0,0, 0,0, 0,
1,1, 0,0, 0,0,1, 0,0, 0,0, 0,0,0},

//

 -
- - - - - - - - - -
- - - - - - - - - - - - - -

- - - - - - - - - - - - - -

{0, 0,0, 0,0, 0,0,0, 0,0, 0,
0, 0,0,0, 0,0, 0,0,0, 0,0, 0,0, 0,
1,0, 0,0, 0,0,0, 0,0, 1,0, 0,0,0},

{0, 0,0, 0,0, 0,0,1, 0,0, 0,
0, 0,0,0, 0,0, 0,0,1, 0,0, 0,0, 0,
0,1, 0,0, 0,0,1, 0,1, 0,0, 0,0,0},

{0, 0,0, 0,0, 0,0,0, 0,0, 0,
0, 0,0,0, 0,0, 0,0,0, 0,0, 0,0, 0,
1,1, 0,0, 0,0,0, 0,1, 1,0, 0,0,0},

//

 -
- - - - - - - - - -
- - - - - - - - - - - - - -

- - - - - - - - - - - - - -

{0, 0,0, 0,0, 0,0,0, 0,0, 0,
0, 0,0,0, 0,0, 0,0,0, 0,0, 0,0, 0,
1,0, 0,0, 0,0,0, 0,0, 1,0, 0,0,0},

{0, 0,0, 0,0, 0,0,0, 0,0, 0,
0, 0,0,0, 0,0, 0,0,0, 0,0, 0,0, 0,
0,0, 0,0, 0,0,0, 0,0, 0,0, 0,0,0},

{0, 0,0, 0,0, 0,0,0, 0,0, 0,
0, 0,0,0, 0,0, 0,0,0, 0,0, 0,0, 0,
0,0, 0,0, 0,0,0, 0,0, 0,0, 0,0,0},

//

 -
- - - - - - - - - -
- - - - - - - - - - - - - -

- - - - - - - - - - - - - -

{0,
0,0, 0,0, 0,0,0, 0,0, 0,
0, 0,0,0, 0,0, 0,0,0, 0,0, 0,0, 0,
0,0, 0,0, 0,0,0, 0,0, 0,0, 0,0,0},

{0,
0,0, 0,0, 0,0,0, 0,0, 0,
0, 0,0,0, 0,0, 0,0,0, 0,0, 0,0, 0,
0,0, 0,0, 0,0,0, 0,0, 0,0, 0,0,0},

{0, 0,0, 0,0, 0,0,0, 0,0, 0,
0, 0,0,0, 0,0, 0,0,0, 0,0, 0,0, 0,
0,0, 0,0, 0,0,0, 0,0, 0,0, 0,0,0},

}};

glPushMatrix();

// choose fingering (CODE REF. 46)

oldFingering = currentFingering;

// preserve old fingering

currentFingering.note = getMonoPoly((octave * 12) + pitch);

// extract current note

if(oldFingering.note!=currentFingering.note && currentFingering.note != 0){
// detect note change

int favourDefault = 0;

if(fingerings[0][KEY_COUNT][currentFingering.note]!=0){

// if alternates exist, find cost of change

for(int l=0; l<11;l++){

if(fingerings[oldFingering.bank][l][oldFingering.note] == fingerings[0][l][currentFingering.note]) favourDefault++;

if(fingerings[oldFingering.bank][l][oldFingering.note] == fingerings[1][l][currentFingering.note]) favourDefault--;

}

}

if(favourDefault<0){

// balance findings and set cheapest

currentFingering.bank = 1;

//

}else currentFingering.bank = 0;

//

}

// draw key mechanism

glPushMatrix();

glTranslatef(0.0,-17.5,0.0);

// move to base of body

int rodCount = sizeof(rods)/sizeof(rods[0]);

// extract number of rods

for(int i=0;i<rodCount;i++){

// iterate through rods (CODE REF. 47)

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, flute_diff_and_amb);

// re-set flute material

glMaterialf(GL_FRONT, GL_SHININESS, flute_shininess);

//

glPushMatrix();

glRotatef(rods[i].pOffset, 0.0, 1.0, 0.0);

// rotate around tube to angle of rod

glTranslatef(0.0, rods[i].vOffset, 1.1);

// move up tube to base of rod

glPushMatrix();

glScalef(0.15, rods[i].length / 35, 0.15);

// scale and draw rod

glTranslatef(0.0, 17.5, 0.0);

//

drawTube(35.0, 0.005);

//

glPopMatrix();

for(int j=0;j<MAX_KEYS;j++){

// iterate through rods' keys (CODE REF. 48)

noteOn[0] = noteOn[1] = false;

// reset key display mode

if(keys[i][j].finger != 0){

// is note fingerable?

if(fingerings[currentFingering.bank][keys[i][j].finger - 1][currentFingering.note] == 1)

noteOn[0] = true;

// mark note 'depressed', if currently fingered

}else{

for(int k=0;k<3;k++){

if(keys[i][j].parent[k] != 0)
// is note indirectly closeable?

if(fingerings[currentFingering.bank][keys[i][j].parent[k] - 1][currentFingering.note] == 1)

noteOn[1] = true;

// mark note 'indirectly depressed' if required

}

}

glPushMatrix();

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, flute_diff_and_amb);// re-set flute material

if(HIGHLIGHT_MODE)

// if highlight mode on…

if(noteOn[0])

// …and marked 'depressed'…

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, highlight);

// …then use highlight

if(DEPENDENT_MODE)

// if dependent mode on…

if(noteOn[1])

// …and marked 'indirectely depressed'…

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, half_highlight);
// …then use alternative highlight

if(DEPRESS_MODE)

// if depress mode on…

if(noteOn[0]||noteOn[1])

// …and marked depressed (anyhow)

glRotatef(keys[i][j].direction * 10.0, 0.0, 1.0, 0.0);

// …then depress

switch(keys[i][j].type){

// use appropriate code to draw current type

case ROUND_KEY:

glRotatef(keys[i][j].direction * 35.0, 0.0, 1.0, 0.0);

// rotate, position, scale and draw round key

glTranslatef(keys[i][j].direction, keys[i][j].vOffset, 0.2);

//

glRotatef(90.0, 1.0, 0.0, 0.0);

//

glScalef(0.1*keys[i][j].data1,0.001*keys[i][j].data1,0.1*keys[i][j].data1);
//

drawTube(35.0, 0.5);

//

break;

case DRIP_KEY:

glRotatef(keys[i][j].direction*35*keys[i][j].data3,0.0,1.0,0.0);
// wrap long keys around body

glTranslatef(keys[i][j].direction*keys[i][j].data3,keys[i][j].data2+keys[i][j].vOffset,0.3); // position key

glRotatef(90.0, 1.0, 0.0, 0.0);

// rotate, scale, normalise and draw 'drip' key

glRotatef(keys[i][j].data1, 0.0, 1.0, 0.0);

//

glScalef(0.03, 0.01, 0.02);

//

glEnable(GL_NORMALIZE);

//

glutSolidSphere(17.5,12,6);

//

glDisable(GL_NORMALIZE);

//

break;

}

glPopMatrix();

}

glPopMatrix();

}

glPopMatrix();

glPopMatrix();

}

void miviFLUTE::drawTube(float length, float curve)

// draws a capped OpenGL cylinder (CODE REF. 49)
{

for(int k=-1;k<2;k++){

glEnable(GL_NORMALIZE);

// begin normalising normals

glBegin(GL_QUAD_STRIP);

// init a sequence of multiple, joined quads

for(float i=0.0;i<=(2*Pi)+0.01;i+=Pi/6){

// rotates around axle

switch(k){

case -1:

// on 1st outer loop iteration, draw end cap

glNormal3f(0.0, k,
0.0);

glVertex3f(0.0,
length * k * (0.5 + curve), 0.0);

glNormal3f(cos(i), 1/(20 * curve) * k, sin(i));

glVertex3f(cos(i), length * k / 2, sin(i));

break;

case 1:

// on last outer loop iteration, draw top cap

glNormal3f(cos(i), 1/(20 * curve) * k, sin(i));

glVertex3f(cos(i), length * k / 2, sin(i));

glNormal3f(0.0, k, 0.0);

glVertex3f(0.0,
length * k * (0.5 + curve), 0.0);

break;

case 0:

// on 2nd outer loop iteration, draw body

glNormal3f(cos(i), 0.0,
sin(i));

glVertex3f(cos(i), -length / 2, sin(i));

glNormal3f(cos(i), 0.0, sin(i));

glVertex3f(cos(i), +length / 2, sin(i));

break;

}

}

glEnd();

// finalises quadrilateral sequence

glDisable(GL_NORMALIZE);

// end normalising normals

}

}

void miviFLUTE::drawRib()
// draws a flute rib in the main body (CODE REF. 50)
{

glPushMatrix();

glScalef(1.2, 0.004, 1.2);

// scales and draws rib

drawTube(35.0, 4.0);

//

glPopMatrix();

}

	
	bibliography

	[1] B. Adolphe, The Mind’s Ear, Missouri: MMB Music Inc, 1991.

[2] D.P. Anderson and R. Kuivila. A System for Computer Music Performance, ACM Transactions on Computer Science 8(1):56, 1990.

[3] E. Angel. Interactive Computer Graphics: a top-down approach with OpenGL, Addison-Wesley, 2000. 2nd Edition.

[4] N. Ben-Or. The Alexander Technique in the Preparation and Performance of Music. Private Publication, 1988.

[5] T.Boehm. The Flute and Flute-Playing, Dover Publications, Inc., 1964. Republished from 1922 revised edition. Original edition published 1872.

[6] A. Burns and A. Wellings. Real-Time Systems and Programming Languages, Addison-Wesley, 2001. 3rd Edition.

[7] W. Buxton and R. Dannenberg. The Computer as Musical Accompanist, ACM SIGCHI Conf. Proc. on Human Factors in Computing 17(4):41-43, 1996.

[8] Casio Computer Co. Ltd. CTK-520L Keyboard Technical Specifications, 2000. Available from http://www.casio.com.

[9] R.W. Chabay and B.A. Sherwood. A Practical Guide for the Creation of Education Software, in Computer-Assisted Instruction and Intelligent Tutoring Systems, Lawrence Erlbaum Associates, Inc., 1992.

[10] R.Chapman. The Complete Guitarist. Dorling Kindersley, 1993.

[11] Sally Chappell. Developing the complete pianist: a study of the importance of a whole-brain approach to piano teaching, B.J. Music Ed. 16(3):253-262, 1999.

[12] D. Cope. Experiments in Musical Intelligence, A-R Editions, Inc., 1996.

[13] G.R. Culley. “From syntax to semantics in Foreign Language CAI”, in Computer-Assisted Instruction and Intelligent Tutor Systems, 1992.
[14] R. Dick. The Other Flute, Oxford University Press, 1975.
[15] E.W. Dijkstra. A note on Two Problems in Connection with Graphs, Numerische Mathematik 1:269-271, 1959.
[16] S. Gordon, Etudes for Piano Teachers: Reflections on the Teacher’s Art, Oxford University Press, 1995.
[17] John Harton, “The Importance of Enjoyment and Achievement”, in Handbook for Music Teachers, Novello and Co Ltd., 1964.
[18] P. Van Hentenryck. Constraint Satisfaction in Logic Programming, MIT Press 1989.
[19] R.W. House. Instrumental Music for Today’s Schools. Prentice Hall, 1965.

[20] T. Howell. The Anant-Garde Flute, University of California Press, 1974.

[21] J. Huopaniemi, R. Hanninen, T. Ilmonen, H. Napari, T. Lokki, L. Savioja, H. Huopaniemi, M. M. Karjalainen, T. Tolonen, V. Valimaki, S. Valimaki and T. Takala. Virtual Orchestra Performance, ACM SIGGRAPH Visual Proceedings of SIGGRAPH’97 (p.81), 1997.

[22] T. Ilmonen. Tracking Conductor of an Orchestra using Artificial Neural Networks, Master’s Thesis, Telecommunications Software and Multimedia Laboratory, Helsinki University of Technology, 1999.

[23] Finn Jensen, Introduction to Bayesian Networks, UCL Press, 2001. 2nd Edition.

[24] Ian Laurence. Music and the Teacher, The Pitman Press, 1975.

[25] Loki Software. OpenAL Specification and Reference, October 2000. Version 1.0 (final draft). Available from http://www.openal.org.

[26] Tapio Lokki, Jarmo Hiipakka, Rami Hanninen, Tommi Ilmonen, Lauri Savioja and Tapio Takala. Realtime audiovisual rendering and contemporary audiovisual art. Organised Sound 3(3): 219–33. Cambridge University Press, 1998.

[27] W. Lytle.. More bells and whistles [video]. SIGGRAPH’90 Electronic Theater, 1990. Technically described in J. Hahn (ed.), Sound Synchronization and Synthesis for Computer Animation and Virtual Reality, Course Note 12, SIGGRAPH’94, 1994. Also described in IEEE Computer 24(7):4 and cover (July 1991).
[28] R. Mager. Preparing Instructional Objectives, Atlantic Books, 1998. 3rd Edition.
[29] Hideyuki Manta et al. A Computer Music System that Follows a Human Conductor. IEEE Computer 24(7):44-53, 1991.

[30] Paul Messick. MAXIMUM MIDI: Music Applications in C++, Manning Publications, 1998.

[31] MIDI Manufacturers Association. The Complete MIDI 1.0 Detailed Specification, March 1996. Version 96.1.

[32] MIDI Manufacturers Association and Japan MIDI Standard Committee. General MIDI specification, September 1991. Available from: http://www.midi.org.

[33] G. Morris. Flute Technique, Oxford University Press, 1991.

[34] J.J.Quantz. On Playing the Flute, Faber and Faber, 1966.

[35] B. Reimer. A Philosophy of Music Education. Prentice Hall, 1989.

[36] Roland Corporation. General Sound (GS) Specification, 1990. Available from http://www.rolandus.com.

[37] Roland Corporation. V-MT1 Music Tutor Visual MT Product Notes. Available from: http://www.rolandus.com/PRODUCTS/INFO/PDF/VMT1FX.PDF.
[38] Roland Corporation. Wanna Play? (Or Do You Wanna Practise?). Available from: http://www.rolandus.com.

[39] T. Rossing, R.F. Moore and P.A. Wheeler. The Science of Sound, Addison-Wesley, 2002.

[40] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Prentice Hall, 1995.

[41] Samir I. Sayegh. Fingering for string instruments with Optimal Path Paradigm. Computer Music Journal, 13(3):76-84, 1989.

[42] Silicon Graphics, Inc. The OpenGL Graphics System: A Specification, April 1999. Version 1.2.1. Available from: http://www.opengl.org.

[43] R. Slack. “The Use of Aural and Visual Aids”, in Handbook for Music Teachers, Novello and Co Ltd., 1964.

[44] C. Small. Music, Society, Education, Wesleyan University Press, 1996. 2nd Edition.

[45] D.J. Spiegelhalter, A. Thomas, N.G. Best and W.R. Gilks. BUGS: Bayesian inference Using Gibbs Sampling, Version 0.50. MRC Biostatistics Unit, Cambridge, 1995.
[46] Steinberg. Virtual Studio Technology Plugin Specification 2.0, Software Development Kit Documentation, 1999. Documentation Release #1.

[47] E.R. Steinberg. Teaching Computers to Teach, Laurence Erlbaum Associates, Inc., 1984.

[48] K. Swanwick. Music, Mind and Education, Routledge, 1988.

[49] T. Takala, R. Hanninen, V. Valimaki, L. Savioja, J. Huopaniemi, T. Huotilainen, M. Karjalainen. An integrated system for virtual audio reality, 100th Audio Engineering Society (AES) Convention Preprint no. 4229. Copenhagen Denmark, 1996.
[50] J.Taylor. Tone production on the Classical Guitar, Musical New Services, 1978.

[51] J.Thomson. The Cambridge Companion to the Recorder, Cambridge University Press, 1995

[52] A.J. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding algorithm, IEEE Transactions on Information Theory IT3(2):260-269, 1967.

[53] Paul White. basic MIDI, 2000. Sanctuary Publishing.

[54] Paul White. MIDI for the Technophobe, 2000, Sanctuary Publishing.

[55] Yamaha Corporation. Yamaha CS1x Data List, March 1996.

[56] Yamaha Corporation. XG Specification, October 1998. Version 1.32.

[57] Yamaha Corporation and Stanford University. SONDIUS XG Virtual Acoustic Modelling Synthesis. Available from: http://www.stanford.edu/group/cpdcorp/research/otlsondius.html

skill

* As reported by Microsoft Word. Including all the body of the report and Appendix B, but excluding Appendix A and C.

� More information about Korg can be found at http://www.korg.com.

� More information about Steinberg and Cakewalk, including their products can be found on the internet at http://www.cakewalk.com and http://www.steinberg.de (in German), respectively.

� Some instruments, from independent manufacturers, support all three standards, like the TR-Rack from Korg.

� Also evident from their respective specifications � REF _Ref3631923 \r \h � * MERGEFORMAT �[36]�� REF _Ref3631934 \r \h � * MERGEFORMAT �[56]� and release dates.

� Information about Zimmer and his use of sampling technology can be found at http://www.mediaventures.com.

� As iterated in other sections, MIVI is not about teaching pieces of music, but teaching the instrument – when the aspirant violinist wants to learn about plucking, their education will suffer little from the simple change in instrument setting. Indeed, the bigger burden will be changing the MIDI instrument, in the host, so that they can hear, as well as see the plucked violin.

� During the formative years of audio playback devices, this requirement was not obvious in some classrooms. Slack � REF _Ref3633231 \r \h ��[43]� cites interesting examples of attempts by American teachers to teach music performance solely through the playback of audio using gramophones of questionable sound quality.

� At time of writing, the MIVI application has been implemented in both a Piano and Flute version.

� More information about NullSoft and WinAMP can be found at http://www.winamp.com.

� For more information about the MIDAS project, see http://www-users.york.ac.uk/~adh2/midas/.

� It is possible to code for VST using languages other than C. The only requirement is the ability to compile to a Win32 dynamic link library (or equivalent on other platforms). However, these languages are not officially or widely supported by Steinberg or any other body.

� More information about the Music Minus One range can be found at http://www.musicminusone.com.

� Unfortunately, it is not simply a case of setting GL_ACTIVE to false, as the GL window does not notify us of destruction, and thus prompt the toggling of this variable.

� In our implementation, this performance hit will be negligible. See the performance considerations of section 3.2.1.

� In truth, the flute can be played in such a way as to produce a numerous variety of chords, by utilising the sonic character of instrument. A highly skilled player can employ ‘great dexterity in lip control’ (G. Morris, 1991) to excite foreign harmonics to yield ‘multiphonics’. A more crude, and easily reproduced example of such an anomaly, is that of the piercing squeak often heard from beginning clarinettists. Some 2000 of these more melodic flute chords exist and are listed in the publications of Howell � REF _Ref3712098 \r \h ��[20]� and Dick � REF _Ref3712107 \r \h ��[14]�.

� The reader is referred to section VII of Boehm � REF _Ref3634424 \r \h � * MERGEFORMAT �[5]� detailing the meticulous construction of the flutes key mechanism.

� However, Hancock was sufficiently impressed with the software to offer a field test of MIVI (in its current state) involving his students and schools. Sadly, time constraints did not allow for such experiment.

� Preparations for such distribution are already underway. The executable and source code for the project should be available shortly after the completion of this report. The reader is referred to http://www.nashnet.co.uk for more information.

� More information about these technologies can be found on ATI and Matrox’s websites at http://www.ati.com and http://www.matrox.com.

� Note: technically, it is not the cursor you push, or pop, but a data structure representing the current viewing matrix. The example has been bastardised to allow the reader to understand the net result more easily, circumventing the need to bombard them with complicated matrix geometry. Although this allows a more intuitive approach to MIVI project, people, who are serious about programming in OpenGL, should refer to the more involved explanation in Angel � REF _Ref3707636 \r \h � * MERGEFORMAT �[3]�.

PAGE
Page 66
Christopher Nash
MIVI a musical instrument visual interface

_1078910584.bin

_1078910641.bin

_1078910685.bin

_1078910704.bin

_1078910721.bin

_1078910727.bin

_1078910739.bin

_1078910711.bin

_1078910693.bin

_1078910662.bin

_1078910674.bin

_1078910653.bin

_1078910603.bin

_1078910625.bin

_1078910592.bin

_1078910516.bin

_1078910541.bin

_1078910576.bin

_1078910525.bin

_1078910486.bin

_1078910502.bin

_1078910473.bin

